1
0
Fork 0
mirror of https://github.com/Findus23/rebound-collisions.git synced 2024-09-18 14:43:49 +02:00
rebound-collisions/collisionhistory.py

120 lines
3.8 KiB
Python

import random
from sys import argv
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from rebound import SimulationArchive, Simulation
from scipy.constants import mega
from extradata import ExtraData, CollisionMeta
from utils import filename_from_argv, earth_mass, earth_water_mass, plot_settings, is_ci, is_potentially_habitable
files = argv[1:]
multifile = len(files) > 1
plot_settings()
fig: Figure = plt.figure()
ax_masses: Axes = fig.add_subplot(2, 1, 1)
ax_wmfs: Axes = fig.add_subplot(2, 1, 2)
ax_wmfs.set_ylabel("water mass fraction")
ax_masses.set_ylabel("masses [kg]")
for ax in [ax_wmfs, ax_masses]:
ax.set_xlim(1e4, 200 * mega)
ax.set_xlabel("time [yr]")
ax.set_xscale("log")
ax.set_yscale("log")
earth_mass_ax = ax_masses.secondary_yaxis("right",
functions=(lambda x: x / earth_mass, lambda x: x * earth_mass))
earth_mass_ax.set_ylabel('masses [$M_\\oplus$]')
ax_wmfs.axhline(earth_water_mass / earth_mass, linestyle="dotted")
num_formed_planets = 0
num_large_planets = 0
num_habitable_planets = 0
num_water_rich_planets = 0
random.seed(1)
random.shuffle(files)
for file in files:
fn = filename_from_argv(file)
ed = ExtraData.load(fn)
sa = SimulationArchive(str(fn.with_suffix(".bin")))
last_sim: Simulation = sa[-1]
print([p.hash.value for p in last_sim.particles])
print(last_sim.t)
for particle in last_sim.particles:
if ed.pd(particle).type in ["sun", "gas giant"]:
continue
# if not is_potentially_habitable(particle):
# continue
masses = []
objects = []
times = []
hash = particle.hash.value
objects.append(ed.pdata[hash])
times.append(ed.meta.current_time)
num_formed_planets += 1
if particle.m > .6 * earth_mass:
num_large_planets += 1
if is_potentially_habitable(particle):
num_habitable_planets += 1
if ed.pd(particle).water_mass_fraction > 1e-4:
num_water_rich_planets += 1
while True:
print(f"looking at {hash}")
try:
collision = ed.tree.get_tree()[hash]
except KeyError:
print("found end of the tree")
break
meta: CollisionMeta = collision["meta"]
parents = collision["parents"]
print("mass:", ed.pdata[hash].total_mass / earth_mass)
masses.append(ed.pdata[hash].total_mass)
objects.append(ed.pdata[hash])
times.append(meta.time)
# print(collision)
if ed.pdata[parents[0]].total_mass > ed.pdata[parents[1]].total_mass:
hash = parents[0]
else:
hash = parents[1]
objects.append(ed.pdata[hash])
times.append(0)
if len(times) < 3:
continue
masses = [p.total_mass for p in objects]
wmfs = [p.water_mass_fraction for p in objects]
figs = []
if multifile:
args = {
"linewidth": 1,
"color": "black",
"alpha": .3
}
else:
args = {}
ax_masses.step(times, masses, label=particle.hash.value, **args)
ax_wmfs.step(times, wmfs, label=particle.hash.value, **args)
if not multifile:
for ax in [ax_wmfs, ax_masses]:
ax.legend()
print(num_large_planets / num_formed_planets)
habitable_large_planet_fraction = num_habitable_planets / num_large_planets
water_rich_planet_fraction = num_water_rich_planets / num_habitable_planets
print(habitable_large_planet_fraction)
print(water_rich_planet_fraction)
fig.tight_layout()
if not is_ci():
fig.savefig(f"/home/lukas/tmp/collisionhistory_{fn.name}.pdf", transparent=True)
plt.show()