1
0
Fork 0
mirror of https://github.com/Findus23/rebound-collisions.git synced 2024-09-18 14:43:49 +02:00

finish collisionhistory.py

This commit is contained in:
Lukas Winkler 2022-01-30 19:50:57 +01:00
parent 8b9ab1f00e
commit 1b26f4091e
Signed by: lukas
GPG key ID: 54DE4D798D244853

View file

@ -1,77 +1,120 @@
import random
from sys import argv
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from rebound import SimulationArchive, Simulation
from scipy.constants import mega
from extradata import ExtraData, CollisionMeta
from utils import filename_from_argv, earth_mass, earth_water_mass, plot_settings, is_ci
from utils import filename_from_argv, earth_mass, earth_water_mass, plot_settings, is_ci, is_potentially_habitable
files = argv[1:]
multifile = len(files) > 1
plot_settings()
fn = filename_from_argv()
ed = ExtraData.load(fn)
sa = SimulationArchive(str(fn.with_suffix(".bin")))
last_sim: Simulation = sa[-1]
print([p.hash.value for p in last_sim.particles])
print(last_sim.t)
fig: Figure = plt.figure()
ax_masses: Axes = fig.add_subplot(2, 1, 1)
ax_wmfs: Axes = fig.add_subplot(2, 1, 2)
for particle in last_sim.particles:
if ed.pd(particle).type in ["sun", "gas giant"]:
continue
masses = []
objects = []
times = []
hash = particle.hash.value
objects.append(ed.pdata[hash])
times.append(ed.meta.current_time)
ax_wmfs.set_ylabel("water mass fraction")
ax_masses.set_ylabel("masses [kg]")
for ax in [ax_wmfs, ax_masses]:
ax.set_xlim(1e4, 200 * mega)
ax.set_xlabel("time [yr]")
ax.set_xscale("log")
ax.set_yscale("log")
while True:
print(f"looking at {hash}")
try:
collision = ed.tree.get_tree()[hash]
except KeyError:
print("found end of the tree")
break
meta: CollisionMeta = collision["meta"]
parents = collision["parents"]
print("mass:", ed.pdata[hash].total_mass / earth_mass)
masses.append(ed.pdata[hash].total_mass)
earth_mass_ax = ax_masses.secondary_yaxis("right",
functions=(lambda x: x / earth_mass, lambda x: x * earth_mass))
earth_mass_ax.set_ylabel('masses [$M_\\oplus$]')
ax_wmfs.axhline(earth_water_mass / earth_mass, linestyle="dotted")
num_formed_planets = 0
num_large_planets = 0
num_habitable_planets = 0
num_water_rich_planets = 0
random.seed(1)
random.shuffle(files)
for file in files:
fn = filename_from_argv(file)
ed = ExtraData.load(fn)
sa = SimulationArchive(str(fn.with_suffix(".bin")))
last_sim: Simulation = sa[-1]
print([p.hash.value for p in last_sim.particles])
print(last_sim.t)
for particle in last_sim.particles:
if ed.pd(particle).type in ["sun", "gas giant"]:
continue
# if not is_potentially_habitable(particle):
# continue
masses = []
objects = []
times = []
hash = particle.hash.value
objects.append(ed.pdata[hash])
times.append(meta.time)
# print(collision)
if ed.pdata[parents[0]].total_mass > ed.pdata[parents[1]].total_mass:
hash = parents[0]
times.append(ed.meta.current_time)
num_formed_planets += 1
if particle.m > .6 * earth_mass:
num_large_planets += 1
if is_potentially_habitable(particle):
num_habitable_planets += 1
if ed.pd(particle).water_mass_fraction > 1e-4:
num_water_rich_planets += 1
while True:
print(f"looking at {hash}")
try:
collision = ed.tree.get_tree()[hash]
except KeyError:
print("found end of the tree")
break
meta: CollisionMeta = collision["meta"]
parents = collision["parents"]
print("mass:", ed.pdata[hash].total_mass / earth_mass)
masses.append(ed.pdata[hash].total_mass)
objects.append(ed.pdata[hash])
times.append(meta.time)
# print(collision)
if ed.pdata[parents[0]].total_mass > ed.pdata[parents[1]].total_mass:
hash = parents[0]
else:
hash = parents[1]
objects.append(ed.pdata[hash])
times.append(0)
if len(times) < 3:
continue
masses = [p.total_mass for p in objects]
wmfs = [p.water_mass_fraction for p in objects]
figs = []
if multifile:
args = {
"linewidth": 1,
"color": "black",
"alpha": .3
}
else:
hash = parents[1]
objects.append(ed.pdata[hash])
times.append(0) # TODO: check log-x
if len(times) < 3:
continue
masses = [p.total_mass for p in objects]
wmfs = [p.water_mass_fraction for p in objects]
figs = []
ax_masses.step(times, masses, label=particle.hash.value)
ax_wmfs.step(times, wmfs, label=particle.hash.value)
ax_wmfs.set_ylabel("water mass fraction")
ax_masses.set_ylabel("masses [kg]")
args = {}
ax_masses.step(times, masses, label=particle.hash.value, **args)
ax_wmfs.step(times, wmfs, label=particle.hash.value, **args)
if not multifile:
for ax in [ax_wmfs, ax_masses]:
ax.set_xlim(1e4, ed.meta.current_time)
ax.set_xlabel("time [yr]")
ax.set_xscale("log")
ax.set_yscale("log")
ax.legend()
twin_ax = ax_masses.twinx()
mn, mx = ax_masses.get_ylim()
twin_ax.set_ylim(mn / earth_mass, mx / earth_mass)
twin_ax.set_ylabel('[$M_\\oplus$]')
twin_ax.set_yscale("log")
ax_wmfs.axhline(earth_water_mass/earth_mass,linestyle="dotted")
print(num_large_planets / num_formed_planets)
habitable_large_planet_fraction = num_habitable_planets / num_large_planets
water_rich_planet_fraction = num_water_rich_planets / num_habitable_planets
print(habitable_large_planet_fraction)
print(water_rich_planet_fraction)
fig.tight_layout()
if not is_ci():
fig.savefig("/home/lukas/tmp/collisionhistory.pdf", transparent=True)
fig.savefig(f"/home/lukas/tmp/collisionhistory_{fn.name}.pdf", transparent=True)
plt.show()