mirror of
https://github.com/glatterf42/spectra_python_files.git
synced 2024-09-08 03:03:47 +02:00
60 lines
1.6 KiB
Python
60 lines
1.6 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Mar 16 15:12:21 2022
|
|
|
|
@author: ben
|
|
"""
|
|
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from pathlib import Path
|
|
|
|
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
|
|
|
|
#choose waveform and Lbox:
|
|
waveform = "DB8" #DB4, DB8 or shannon
|
|
Lbox = 100.0 #only option as of now
|
|
Nres1 = 128
|
|
Nres2 = 256
|
|
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
|
knyquist1 = Nres1 * k0
|
|
knyquist2 = Nres2 * k0
|
|
|
|
filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_cross_spectrum"
|
|
|
|
#find columns in file manually
|
|
#is k really in Mpc? Swift doesn't use /h internally at least.
|
|
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
|
|
|
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
|
|
|
#only consider rows above resolution limit
|
|
df = df[df["k [Mpc]"] >= k0]
|
|
|
|
k = df["k [Mpc]"]
|
|
p1 = df["P1"]
|
|
p1_error = df["err. P1"]
|
|
p2 = df["P2"]
|
|
p2_error = df["err. P2"]
|
|
pcross = df["Pcross"]
|
|
|
|
|
|
# Plot the power spectra:
|
|
plt.loglog(k, p1)
|
|
plt.loglog(k, p2)
|
|
plt.title(f"Power Spectra {waveform} {Lbox:.0f}")
|
|
plt.xlabel("k [Mpc]")
|
|
plt.ylabel("P")
|
|
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres1}")
|
|
plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
|
|
plt.legend()
|
|
|
|
# Plot the cross correlation:
|
|
# plt.plot(k, pcross)
|
|
# plt.title(f"Cross correlation {waveform} {Lbox:.0f}")
|
|
# plt.xlabel("k [Mpc]")
|
|
# plt.ylabel("C = Pcross")
|
|
|
|
|
|
|