mirror of
https://github.com/glatterf42/spectra_python_files.git
synced 2024-09-08 03:03:47 +02:00
first commit
This commit is contained in:
commit
04cea3ab51
13 changed files with 487 additions and 0 deletions
BIN
__pycache__/directories.cpython-37.pyc
Normal file
BIN
__pycache__/directories.cpython-37.pyc
Normal file
Binary file not shown.
BIN
__pycache__/directories.cpython-38.pyc
Normal file
BIN
__pycache__/directories.cpython-38.pyc
Normal file
Binary file not shown.
BIN
__pycache__/write_spectra_jobs.cpython-37.pyc
Normal file
BIN
__pycache__/write_spectra_jobs.cpython-37.pyc
Normal file
Binary file not shown.
BIN
__pycache__/write_spectra_jobs.cpython-38.pyc
Normal file
BIN
__pycache__/write_spectra_jobs.cpython-38.pyc
Normal file
Binary file not shown.
88
agora_plot_power_spectra.py
Normal file
88
agora_plot_power_spectra.py
Normal file
|
@ -0,0 +1,88 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Mar 16 15:12:21 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
import scipy.special as sf
|
||||
import numpy as np
|
||||
|
||||
def Dplus( lambda0, a ):
|
||||
return a * np.sqrt(1.0+lambda0*a**3) * sf.hyp2f1(3.0/2.0, 5.0/6.0, 11.0/6.0, -lambda0 * a**3 )
|
||||
|
||||
basedir = Path("/home/ben/sims/swiftsim/examples/agora/spectra/")
|
||||
|
||||
#choose waveform and Lbox:
|
||||
Lbox = 100.0 #only option as of now
|
||||
Nres1 = 128
|
||||
# Nres2 = 256
|
||||
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
||||
knyquist1 = Nres1 * k0
|
||||
# knyquist2 = Nres2 * k0
|
||||
times = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
||||
# scale_factor = 0 # give index of a list above
|
||||
|
||||
Omega_m = 0.272
|
||||
Omega_L = 0.728
|
||||
lambda_0 = Omega_L / Omega_m
|
||||
|
||||
#find columns in file manually
|
||||
#is k really in Mpc? Swift doesn't use /h internally at least.
|
||||
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
||||
|
||||
zstart = 100
|
||||
a_ics = 1 / (1 + zstart)
|
||||
filename_ics = basedir / 'agora_ics_cross_spectrum'
|
||||
df_ics = pd.read_csv(f'{filename_ics}.txt', sep=' ', skipinitialspace=True, header=None, names=columns, skiprows=1)
|
||||
#only consider rows above resolution limit
|
||||
df_ics = df_ics[df_ics['k [Mpc]'] >= k0]
|
||||
p1_ics = df_ics['P1']
|
||||
D_squared_ics = Dplus(lambda0=lambda_0, a=a_ics) ** 2
|
||||
p1_ics_noramlised = p1_ics / D_squared_ics
|
||||
|
||||
for scale_factor in range(len(times)):
|
||||
filename = basedir / f"agora_a{scale_factor}_cross_spectrum"
|
||||
# filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
|
||||
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_ics_vsc") # for ICs
|
||||
# plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a=0.02 vsc") # for ICs
|
||||
|
||||
|
||||
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
||||
|
||||
#only consider rows above resolution limit
|
||||
df = df[df["k [Mpc]"] >= k0]
|
||||
|
||||
k = df["k [Mpc]"]
|
||||
p1 = df["P1"]
|
||||
p1_error = df["err. P1"]
|
||||
# p2 = df["P2"]
|
||||
# p2_error = df["err. P2"]
|
||||
# pcross = df["Pcross"]
|
||||
|
||||
D_squared = Dplus(lambda0=lambda_0, a=times[scale_factor]) ** 2
|
||||
p1_normalised = p1 / D_squared
|
||||
p1_ic_normalised = p1_normalised / p1_ics_noramlised
|
||||
|
||||
# Plot the power spectra:
|
||||
plt.loglog(k, p1_ic_normalised, label=f"{times[scale_factor]}")
|
||||
# plt.loglog(k, p2, label="P2")
|
||||
|
||||
plt.title(f"Power Spectra Agora 128")
|
||||
savedir = Path(f"/home/ben/Pictures/swift/agora/spectra/power_spectra")
|
||||
|
||||
plt.xlabel("k [Mpc]")
|
||||
plt.ylabel("P")
|
||||
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"k_ny {Nres1}")
|
||||
# plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
|
||||
plt.legend()
|
||||
|
||||
plt.savefig(f"{savedir}.png")
|
||||
|
||||
|
||||
|
||||
|
15
directories.py
Normal file
15
directories.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 12:11:41 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
spectra_basedir = Path("/home/ben/sims/spectra/")
|
||||
|
||||
monofonic_tests_basedir = Path("/home/ben/sims/swift/monofonic_tests/")
|
||||
|
||||
agora_test_basedir = Path('/home/ben/sims/swiftsim/examples/agora/')
|
67
plot_cross_spectra.py
Normal file
67
plot_cross_spectra.py
Normal file
|
@ -0,0 +1,67 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Mar 16 15:12:21 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
|
||||
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
|
||||
|
||||
#choose Nres and Lbox:
|
||||
waveforms = ['DB2', "DB4", "DB8", "shannon"] #DB2, DB4, DB8, shannon are all we have right now
|
||||
Lbox = 100.0 #only option as of now
|
||||
Nres = 256 #128 and 256 exist for now
|
||||
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
||||
knyquist = Nres * k0
|
||||
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
||||
scale_factor = 4 # give index of a list above
|
||||
|
||||
|
||||
for wave in waveforms:
|
||||
filename = basedir / f"{wave}_{Lbox:.0f}/{wave}_{Lbox:.0f}_a{scale_factor}_cross_spectrum"
|
||||
# filename = basedir / f"{wave}_{Lbox:.0f}/{wave}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
|
||||
|
||||
#find columns in file manually
|
||||
#is k really in Mpc? Swift doesn't use /h internally at least.
|
||||
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
||||
|
||||
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
||||
|
||||
#only consider rows above resolution limit
|
||||
df = df[df["k [Mpc]"] >= k0]
|
||||
|
||||
k = df["k [Mpc]"]
|
||||
p1 = df["P1"]
|
||||
p1_error = df["err. P1"]
|
||||
p2 = df["P2"]
|
||||
p2_error = df["err. P2"]
|
||||
pcross = df["Pcross"]
|
||||
|
||||
|
||||
# Plot the Cross Correlation:
|
||||
plt.plot(k, pcross, label=f"{wave}")
|
||||
|
||||
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_{Nres}_{Lbox:.0f}_ics_vsc") # for ICs
|
||||
# plt.title(f"Cross correlation N={Nres} L={Lbox:.0f} a=0.02 vsc") # for ICs
|
||||
|
||||
savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_{Nres}_{Lbox:.0f}_a{scale_factor}")
|
||||
plt.title(f"Cross correlation N={Nres} L={Lbox:.0f} a={a[scale_factor]}")
|
||||
|
||||
plt.xscale("log")
|
||||
plt.xlabel("k [Mpc]")
|
||||
plt.ylabel("C = Pcross")
|
||||
plt.ylim(0.8, 1.0)
|
||||
plt.xlim(k[0], knyquist)
|
||||
# plt.vlines(knyquist, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres}")
|
||||
plt.legend()
|
||||
|
||||
plt.savefig(f"{savedir}.png")
|
||||
|
||||
|
||||
|
||||
|
65
plot_power_spectra.py
Normal file
65
plot_power_spectra.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Mar 16 15:12:21 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
|
||||
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
|
||||
|
||||
#choose waveform and Lbox:
|
||||
waveform = "shannon" #DB2, DB4, DB8 or shannon
|
||||
Lbox = 100.0 #only option as of now
|
||||
Nres1 = 128
|
||||
Nres2 = 256
|
||||
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
||||
knyquist1 = Nres1 * k0
|
||||
knyquist2 = Nres2 * k0
|
||||
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
||||
scale_factor = 4 # give index of a list above
|
||||
|
||||
filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_a{scale_factor}_cross_spectrum"
|
||||
# filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
|
||||
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_ics_vsc") # for ICs
|
||||
# plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a=0.02 vsc") # for ICs
|
||||
|
||||
#find columns in file manually
|
||||
#is k really in Mpc? Swift doesn't use /h internally at least.
|
||||
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
||||
|
||||
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
||||
|
||||
#only consider rows above resolution limit
|
||||
df = df[df["k [Mpc]"] >= k0]
|
||||
|
||||
k = df["k [Mpc]"]
|
||||
p1 = df["P1"]
|
||||
p1_error = df["err. P1"]
|
||||
p2 = df["P2"]
|
||||
p2_error = df["err. P2"]
|
||||
pcross = df["Pcross"]
|
||||
|
||||
|
||||
# Plot the power spectra:
|
||||
plt.loglog(k, p1, label="P1")
|
||||
plt.loglog(k, p2, label="P2")
|
||||
|
||||
plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a={a[scale_factor]}")
|
||||
savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_a{scale_factor}")
|
||||
|
||||
plt.xlabel("k [Mpc]")
|
||||
plt.ylabel("P")
|
||||
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres1}")
|
||||
plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
|
||||
plt.legend()
|
||||
|
||||
plt.savefig(f"{savedir}.png")
|
||||
|
||||
|
||||
|
||||
|
60
plot_spectra.py
Normal file
60
plot_spectra.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Mar 16 15:12:21 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from pathlib import Path
|
||||
|
||||
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
|
||||
|
||||
#choose waveform and Lbox:
|
||||
waveform = "DB8" #DB4, DB8 or shannon
|
||||
Lbox = 100.0 #only option as of now
|
||||
Nres1 = 128
|
||||
Nres2 = 256
|
||||
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
||||
knyquist1 = Nres1 * k0
|
||||
knyquist2 = Nres2 * k0
|
||||
|
||||
filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_cross_spectrum"
|
||||
|
||||
#find columns in file manually
|
||||
#is k really in Mpc? Swift doesn't use /h internally at least.
|
||||
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
||||
|
||||
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
||||
|
||||
#only consider rows above resolution limit
|
||||
df = df[df["k [Mpc]"] >= k0]
|
||||
|
||||
k = df["k [Mpc]"]
|
||||
p1 = df["P1"]
|
||||
p1_error = df["err. P1"]
|
||||
p2 = df["P2"]
|
||||
p2_error = df["err. P2"]
|
||||
pcross = df["Pcross"]
|
||||
|
||||
|
||||
# Plot the power spectra:
|
||||
plt.loglog(k, p1)
|
||||
plt.loglog(k, p2)
|
||||
plt.title(f"Power Spectra {waveform} {Lbox:.0f}")
|
||||
plt.xlabel("k [Mpc]")
|
||||
plt.ylabel("P")
|
||||
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres1}")
|
||||
plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
|
||||
plt.legend()
|
||||
|
||||
# Plot the cross correlation:
|
||||
# plt.plot(k, pcross)
|
||||
# plt.title(f"Cross correlation {waveform} {Lbox:.0f}")
|
||||
# plt.xlabel("k [Mpc]")
|
||||
# plt.ylabel("C = Pcross")
|
||||
|
||||
|
||||
|
34
prepare_spectral_evaluation_agora.py
Normal file
34
prepare_spectral_evaluation_agora.py
Normal file
|
@ -0,0 +1,34 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 12:00:49 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from pathlib import Path
|
||||
from write_spectra_jobs import write_spectra_jobs_agora
|
||||
from directories import monofonic_tests_basedir, agora_test_basedir
|
||||
|
||||
def main(scale_factor: int, Nres1: int, Nres2: int):
|
||||
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
||||
print(f"Chose scale factor a = {a[scale_factor]} (index {scale_factor} / {len(a) - 1})")
|
||||
|
||||
write_spectra_jobs_agora(scale_factor, Nres1, Nres2,
|
||||
output_basedir=agora_test_basedir / "spectra/")
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
scale_factor = int(argv[1])
|
||||
Nres1 = int(argv[2])
|
||||
Nres2 = int(argv[3])
|
||||
|
||||
main(
|
||||
scale_factor=scale_factor,
|
||||
Nres1=Nres1,
|
||||
Nres2=Nres2
|
||||
)
|
||||
|
45
prepare_spectral_evaluation_wavelets.py
Normal file
45
prepare_spectral_evaluation_wavelets.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 12:00:49 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from pathlib import Path
|
||||
from write_spectra_jobs import write_spectra_jobs
|
||||
from directories import monofonic_tests_basedir
|
||||
|
||||
def main(scale_factor: int, Nres1: int, Nres2: int, Lbox: float, waveforms: list):
|
||||
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
||||
print(f"Chose scale factor a = {a[scale_factor]} (index {scale_factor} / {len(a) - 1})")
|
||||
|
||||
for wave in waveforms:
|
||||
write_spectra_jobs(scale_factor, Nres1, Nres2, Lbox, wave,
|
||||
output_basedir=monofonic_tests_basedir / "spectra/")
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if argv[5] == "all":
|
||||
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
|
||||
else:
|
||||
waveforms = argv[5:len(argv)]
|
||||
|
||||
assert len(waveforms) <= 6
|
||||
|
||||
scale_factor = int(argv[1])
|
||||
Nres1 = int(argv[2])
|
||||
Nres2 = int(argv[3])
|
||||
Lbox = float(argv[4])
|
||||
|
||||
main(
|
||||
scale_factor=scale_factor,
|
||||
Nres1=Nres1,
|
||||
Nres2=Nres2,
|
||||
Lbox=Lbox,
|
||||
waveforms=waveforms
|
||||
)
|
||||
|
26
visualise_ics.py
Normal file
26
visualise_ics.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Mar 21 10:13:36 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import h5py
|
||||
from pathlib import Path
|
||||
|
||||
directory = Path(r"/home/ben/sims/swift/monofonic_tests/DB4_256_100/")
|
||||
file = h5py.File(directory / "ics_DB4_256_100_nan_test_40tasks.hdf5", "r")
|
||||
|
||||
# directory = Path(r"/home/ben/monofonic-experimental/")
|
||||
# file = h5py.File(directory / "ics_DB4_256_100.hdf5", "r")
|
||||
|
||||
for key in file.keys():
|
||||
print(key) #for finding all header entries, which are:
|
||||
|
||||
Header = file["Header"]
|
||||
ICs_parameters = file["ICs_parameters"]
|
||||
PartType1 = file["PartType1"]
|
||||
Units = file["Units"]
|
||||
|
||||
print(PartType1['Coordinates'][0:10])
|
87
write_spectra_jobs.py
Normal file
87
write_spectra_jobs.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 15 12:04:15 2022
|
||||
|
||||
@author: ben
|
||||
|
||||
This currently only evaluates the last snapshot.
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from pathlib import Path
|
||||
from directories import spectra_basedir, monofonic_tests_basedir, agora_test_basedir
|
||||
import os
|
||||
import stat
|
||||
|
||||
def write_spectra_jobs(scale_factor: int, Nres1: int, Nres2: int, Lbox: float, form: str, output_basedir: Path):
|
||||
Nres_max = max(Nres1, Nres2)
|
||||
input_dir_1 = str(monofonic_tests_basedir) + f"/{form}_{Nres1}_{Lbox:.0f}"
|
||||
input_dir_2 = str(monofonic_tests_basedir) + f"/{form}_{Nres2}_{Lbox:.0f}"
|
||||
output_dir = output_basedir / f"{form}_{Lbox:.0f}"
|
||||
output_dir_string = str(output_dir)
|
||||
if output_dir.exists():
|
||||
print(output_dir, "already exists. Skipping...")
|
||||
else:
|
||||
print("creating", output_dir)
|
||||
output_dir.mkdir()
|
||||
|
||||
|
||||
script = f"""#!/bin/bash
|
||||
set -u
|
||||
|
||||
{spectra_basedir}/build/spectra --format=3 --output={output_dir_string}/{form}_{Lbox:.0f}_a{scale_factor} --ngrid={2 * Nres_max} --input={input_dir_1}/output_000{scale_factor}.hdf5 --input={input_dir_2}/output_000{scale_factor}.hdf5
|
||||
"""
|
||||
|
||||
filename = output_dir / "generate_final_spectra.sh"
|
||||
with (filename).open("w") as f:
|
||||
f.write(script)
|
||||
|
||||
permissions = os.stat(filename)
|
||||
os.chmod(filename, permissions.st_mode | stat.S_IEXEC)
|
||||
|
||||
|
||||
|
||||
def write_spectra_jobs_agora(scale_factor: int, Nres1: int, Nres2: int, output_basedir: Path):
|
||||
Nres_max = max(Nres1, Nres2)
|
||||
input_dir = str(agora_test_basedir)
|
||||
output_dir = output_basedir
|
||||
output_dir_string = str(output_dir)
|
||||
if output_dir.exists():
|
||||
print(output_dir, "already exists. Skipping...")
|
||||
else:
|
||||
print("creating", output_dir)
|
||||
output_dir.mkdir()
|
||||
|
||||
script = f"""#!/bin/bash
|
||||
set -u
|
||||
|
||||
{spectra_basedir}/build/spectra --format=3 --output={output_dir_string}/agora_a{scale_factor} --ngrid={2 * Nres_max} --input={input_dir}/output_000{scale_factor}.hdf5 --input={input_dir}/output_000{scale_factor}.hdf5
|
||||
"""
|
||||
|
||||
filename = output_dir / "generate_final_spectra.sh"
|
||||
with (filename).open("w") as f:
|
||||
f.write(script)
|
||||
|
||||
permissions = os.stat(filename)
|
||||
os.chmod(filename, permissions.st_mode | stat.S_IEXEC)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if argv[5] == "all":
|
||||
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
|
||||
else:
|
||||
waveforms = argv[5:len(argv)]
|
||||
|
||||
assert len(waveforms) <= 6
|
||||
|
||||
for form in waveforms:
|
||||
write_spectra_jobs(
|
||||
scale_factor = int(argv[1]),
|
||||
Nres1 = int(argv[2]),
|
||||
Nres2 = int(argv[3]),
|
||||
Lbox = float(argv[4]),
|
||||
form = form,
|
||||
output_dir = monofonic_tests_basedir / "spectra/"
|
||||
)
|
Loading…
Reference in a new issue