1
0
Fork 0
mirror of https://github.com/glatterf42/spectra_python_files.git synced 2024-09-08 03:03:47 +02:00

first commit

This commit is contained in:
glatterf42 2022-04-13 13:15:11 +02:00
commit 04cea3ab51
13 changed files with 487 additions and 0 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,88 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 16 15:12:21 2022
@author: ben
"""
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
import scipy.special as sf
import numpy as np
def Dplus( lambda0, a ):
return a * np.sqrt(1.0+lambda0*a**3) * sf.hyp2f1(3.0/2.0, 5.0/6.0, 11.0/6.0, -lambda0 * a**3 )
basedir = Path("/home/ben/sims/swiftsim/examples/agora/spectra/")
#choose waveform and Lbox:
Lbox = 100.0 #only option as of now
Nres1 = 128
# Nres2 = 256
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
knyquist1 = Nres1 * k0
# knyquist2 = Nres2 * k0
times = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
# scale_factor = 0 # give index of a list above
Omega_m = 0.272
Omega_L = 0.728
lambda_0 = Omega_L / Omega_m
#find columns in file manually
#is k really in Mpc? Swift doesn't use /h internally at least.
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
zstart = 100
a_ics = 1 / (1 + zstart)
filename_ics = basedir / 'agora_ics_cross_spectrum'
df_ics = pd.read_csv(f'{filename_ics}.txt', sep=' ', skipinitialspace=True, header=None, names=columns, skiprows=1)
#only consider rows above resolution limit
df_ics = df_ics[df_ics['k [Mpc]'] >= k0]
p1_ics = df_ics['P1']
D_squared_ics = Dplus(lambda0=lambda_0, a=a_ics) ** 2
p1_ics_noramlised = p1_ics / D_squared_ics
for scale_factor in range(len(times)):
filename = basedir / f"agora_a{scale_factor}_cross_spectrum"
# filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_ics_vsc") # for ICs
# plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a=0.02 vsc") # for ICs
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
#only consider rows above resolution limit
df = df[df["k [Mpc]"] >= k0]
k = df["k [Mpc]"]
p1 = df["P1"]
p1_error = df["err. P1"]
# p2 = df["P2"]
# p2_error = df["err. P2"]
# pcross = df["Pcross"]
D_squared = Dplus(lambda0=lambda_0, a=times[scale_factor]) ** 2
p1_normalised = p1 / D_squared
p1_ic_normalised = p1_normalised / p1_ics_noramlised
# Plot the power spectra:
plt.loglog(k, p1_ic_normalised, label=f"{times[scale_factor]}")
# plt.loglog(k, p2, label="P2")
plt.title(f"Power Spectra Agora 128")
savedir = Path(f"/home/ben/Pictures/swift/agora/spectra/power_spectra")
plt.xlabel("k [Mpc]")
plt.ylabel("P")
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"k_ny {Nres1}")
# plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
plt.legend()
plt.savefig(f"{savedir}.png")

15
directories.py Normal file
View file

@ -0,0 +1,15 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 12:11:41 2022
@author: ben
"""
from pathlib import Path
spectra_basedir = Path("/home/ben/sims/spectra/")
monofonic_tests_basedir = Path("/home/ben/sims/swift/monofonic_tests/")
agora_test_basedir = Path('/home/ben/sims/swiftsim/examples/agora/')

67
plot_cross_spectra.py Normal file
View file

@ -0,0 +1,67 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 16 15:12:21 2022
@author: ben
"""
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
#choose Nres and Lbox:
waveforms = ['DB2', "DB4", "DB8", "shannon"] #DB2, DB4, DB8, shannon are all we have right now
Lbox = 100.0 #only option as of now
Nres = 256 #128 and 256 exist for now
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
knyquist = Nres * k0
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
scale_factor = 4 # give index of a list above
for wave in waveforms:
filename = basedir / f"{wave}_{Lbox:.0f}/{wave}_{Lbox:.0f}_a{scale_factor}_cross_spectrum"
# filename = basedir / f"{wave}_{Lbox:.0f}/{wave}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
#find columns in file manually
#is k really in Mpc? Swift doesn't use /h internally at least.
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
#only consider rows above resolution limit
df = df[df["k [Mpc]"] >= k0]
k = df["k [Mpc]"]
p1 = df["P1"]
p1_error = df["err. P1"]
p2 = df["P2"]
p2_error = df["err. P2"]
pcross = df["Pcross"]
# Plot the Cross Correlation:
plt.plot(k, pcross, label=f"{wave}")
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_{Nres}_{Lbox:.0f}_ics_vsc") # for ICs
# plt.title(f"Cross correlation N={Nres} L={Lbox:.0f} a=0.02 vsc") # for ICs
savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_{Nres}_{Lbox:.0f}_a{scale_factor}")
plt.title(f"Cross correlation N={Nres} L={Lbox:.0f} a={a[scale_factor]}")
plt.xscale("log")
plt.xlabel("k [Mpc]")
plt.ylabel("C = Pcross")
plt.ylim(0.8, 1.0)
plt.xlim(k[0], knyquist)
# plt.vlines(knyquist, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres}")
plt.legend()
plt.savefig(f"{savedir}.png")

65
plot_power_spectra.py Normal file
View file

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 16 15:12:21 2022
@author: ben
"""
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
#choose waveform and Lbox:
waveform = "shannon" #DB2, DB4, DB8 or shannon
Lbox = 100.0 #only option as of now
Nres1 = 128
Nres2 = 256
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
knyquist1 = Nres1 * k0
knyquist2 = Nres2 * k0
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
scale_factor = 4 # give index of a list above
filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_a{scale_factor}_cross_spectrum"
# filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_ics_vsc_cross_spectrum" # for ICs
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_ics_vsc") # for ICs
# plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a=0.02 vsc") # for ICs
#find columns in file manually
#is k really in Mpc? Swift doesn't use /h internally at least.
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
#only consider rows above resolution limit
df = df[df["k [Mpc]"] >= k0]
k = df["k [Mpc]"]
p1 = df["P1"]
p1_error = df["err. P1"]
p2 = df["P2"]
p2_error = df["err. P2"]
pcross = df["Pcross"]
# Plot the power spectra:
plt.loglog(k, p1, label="P1")
plt.loglog(k, p2, label="P2")
plt.title(f"Power Spectra {waveform} L={Lbox:.0f} a={a[scale_factor]}")
savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/power_{waveform}_{Lbox:.0f}_a{scale_factor}")
plt.xlabel("k [Mpc]")
plt.ylabel("P")
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres1}")
plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
plt.legend()
plt.savefig(f"{savedir}.png")

60
plot_spectra.py Normal file
View file

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 16 15:12:21 2022
@author: ben
"""
import pandas as pd
import matplotlib.pyplot as plt
from pathlib import Path
basedir = Path("/home/ben/sims/swift/monofonic_tests/spectra/")
#choose waveform and Lbox:
waveform = "DB8" #DB4, DB8 or shannon
Lbox = 100.0 #only option as of now
Nres1 = 128
Nres2 = 256
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
knyquist1 = Nres1 * k0
knyquist2 = Nres2 * k0
filename = basedir / f"{waveform}_{Lbox:.0f}/{waveform}_{Lbox:.0f}_cross_spectrum"
#find columns in file manually
#is k really in Mpc? Swift doesn't use /h internally at least.
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
#only consider rows above resolution limit
df = df[df["k [Mpc]"] >= k0]
k = df["k [Mpc]"]
p1 = df["P1"]
p1_error = df["err. P1"]
p2 = df["P2"]
p2_error = df["err. P2"]
pcross = df["Pcross"]
# Plot the power spectra:
plt.loglog(k, p1)
plt.loglog(k, p2)
plt.title(f"Power Spectra {waveform} {Lbox:.0f}")
plt.xlabel("k [Mpc]")
plt.ylabel("P")
plt.vlines(knyquist1, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres1}")
plt.vlines(knyquist2, ymin=min(p2), ymax=max(p2), color="black", linestyles="dashed", label=f"{Nres2}")
plt.legend()
# Plot the cross correlation:
# plt.plot(k, pcross)
# plt.title(f"Cross correlation {waveform} {Lbox:.0f}")
# plt.xlabel("k [Mpc]")
# plt.ylabel("C = Pcross")

View file

@ -0,0 +1,34 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 12:00:49 2022
@author: ben
"""
from sys import argv
from pathlib import Path
from write_spectra_jobs import write_spectra_jobs_agora
from directories import monofonic_tests_basedir, agora_test_basedir
def main(scale_factor: int, Nres1: int, Nres2: int):
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
print(f"Chose scale factor a = {a[scale_factor]} (index {scale_factor} / {len(a) - 1})")
write_spectra_jobs_agora(scale_factor, Nres1, Nres2,
output_basedir=agora_test_basedir / "spectra/")
if __name__ == "__main__":
scale_factor = int(argv[1])
Nres1 = int(argv[2])
Nres2 = int(argv[3])
main(
scale_factor=scale_factor,
Nres1=Nres1,
Nres2=Nres2
)

View file

@ -0,0 +1,45 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 12:00:49 2022
@author: ben
"""
from sys import argv
from pathlib import Path
from write_spectra_jobs import write_spectra_jobs
from directories import monofonic_tests_basedir
def main(scale_factor: int, Nres1: int, Nres2: int, Lbox: float, waveforms: list):
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
print(f"Chose scale factor a = {a[scale_factor]} (index {scale_factor} / {len(a) - 1})")
for wave in waveforms:
write_spectra_jobs(scale_factor, Nres1, Nres2, Lbox, wave,
output_basedir=monofonic_tests_basedir / "spectra/")
if __name__ == "__main__":
if argv[5] == "all":
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
else:
waveforms = argv[5:len(argv)]
assert len(waveforms) <= 6
scale_factor = int(argv[1])
Nres1 = int(argv[2])
Nres2 = int(argv[3])
Lbox = float(argv[4])
main(
scale_factor=scale_factor,
Nres1=Nres1,
Nres2=Nres2,
Lbox=Lbox,
waveforms=waveforms
)

26
visualise_ics.py Normal file
View file

@ -0,0 +1,26 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 21 10:13:36 2022
@author: ben
"""
import h5py
from pathlib import Path
directory = Path(r"/home/ben/sims/swift/monofonic_tests/DB4_256_100/")
file = h5py.File(directory / "ics_DB4_256_100_nan_test_40tasks.hdf5", "r")
# directory = Path(r"/home/ben/monofonic-experimental/")
# file = h5py.File(directory / "ics_DB4_256_100.hdf5", "r")
for key in file.keys():
print(key) #for finding all header entries, which are:
Header = file["Header"]
ICs_parameters = file["ICs_parameters"]
PartType1 = file["PartType1"]
Units = file["Units"]
print(PartType1['Coordinates'][0:10])

87
write_spectra_jobs.py Normal file
View file

@ -0,0 +1,87 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 15 12:04:15 2022
@author: ben
This currently only evaluates the last snapshot.
"""
from sys import argv
from pathlib import Path
from directories import spectra_basedir, monofonic_tests_basedir, agora_test_basedir
import os
import stat
def write_spectra_jobs(scale_factor: int, Nres1: int, Nres2: int, Lbox: float, form: str, output_basedir: Path):
Nres_max = max(Nres1, Nres2)
input_dir_1 = str(monofonic_tests_basedir) + f"/{form}_{Nres1}_{Lbox:.0f}"
input_dir_2 = str(monofonic_tests_basedir) + f"/{form}_{Nres2}_{Lbox:.0f}"
output_dir = output_basedir / f"{form}_{Lbox:.0f}"
output_dir_string = str(output_dir)
if output_dir.exists():
print(output_dir, "already exists. Skipping...")
else:
print("creating", output_dir)
output_dir.mkdir()
script = f"""#!/bin/bash
set -u
{spectra_basedir}/build/spectra --format=3 --output={output_dir_string}/{form}_{Lbox:.0f}_a{scale_factor} --ngrid={2 * Nres_max} --input={input_dir_1}/output_000{scale_factor}.hdf5 --input={input_dir_2}/output_000{scale_factor}.hdf5
"""
filename = output_dir / "generate_final_spectra.sh"
with (filename).open("w") as f:
f.write(script)
permissions = os.stat(filename)
os.chmod(filename, permissions.st_mode | stat.S_IEXEC)
def write_spectra_jobs_agora(scale_factor: int, Nres1: int, Nres2: int, output_basedir: Path):
Nres_max = max(Nres1, Nres2)
input_dir = str(agora_test_basedir)
output_dir = output_basedir
output_dir_string = str(output_dir)
if output_dir.exists():
print(output_dir, "already exists. Skipping...")
else:
print("creating", output_dir)
output_dir.mkdir()
script = f"""#!/bin/bash
set -u
{spectra_basedir}/build/spectra --format=3 --output={output_dir_string}/agora_a{scale_factor} --ngrid={2 * Nres_max} --input={input_dir}/output_000{scale_factor}.hdf5 --input={input_dir}/output_000{scale_factor}.hdf5
"""
filename = output_dir / "generate_final_spectra.sh"
with (filename).open("w") as f:
f.write(script)
permissions = os.stat(filename)
os.chmod(filename, permissions.st_mode | stat.S_IEXEC)
if __name__ == "__main__":
if argv[5] == "all":
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
else:
waveforms = argv[5:len(argv)]
assert len(waveforms) <= 6
for form in waveforms:
write_spectra_jobs(
scale_factor = int(argv[1]),
Nres1 = int(argv[2]),
Nres2 = int(argv[3]),
Lbox = float(argv[4]),
form = form,
output_dir = monofonic_tests_basedir / "spectra/"
)