mirror of
https://github.com/glatterf42/sims_python_files.git
synced 2024-09-09 04:33:45 +02:00
177 lines
6.8 KiB
Python
177 lines
6.8 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Mar 11 19:11:42 2021
|
|
|
|
@author: Ben Melville
|
|
"""
|
|
import time
|
|
from pathlib import Path
|
|
from sys import getsizeof
|
|
|
|
import h5py
|
|
import numpy as np
|
|
import scipy.spatial
|
|
|
|
"""
|
|
Use this section to find out how many particles there are. The second part retrieves the total mass of cdm or pbh particles, which is all we need because we only have one type of particle in every simulation.
|
|
"""
|
|
|
|
# paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_pbh"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_pbh")]
|
|
cdm_paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_cdm")]
|
|
pbh_paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_pbh"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_pbh")]
|
|
|
|
|
|
# for path in pbh_paths:
|
|
# file = h5py.File(str(path)+"\snapshot_000.hdf5", "r")
|
|
# names = file["PartType0"]["ParticleIDs"][:]
|
|
# print("There are "+str(len(names))+" particles.")
|
|
|
|
# for path in cdm_paths:
|
|
# file = h5py.File(str(path)+"\snapshot_000.hdf5", "r")
|
|
# names = file["PartType1"]["ParticleIDs"][:]
|
|
# print("There are "+str(len(names))+" particles.")
|
|
|
|
# for path in pbh_paths:
|
|
# filename = str(path)+"\energy.txt"
|
|
# file = np.loadtxt(filename)
|
|
# print("File: "+filename+" Total mass: "+str(file[0][22])+"\n")
|
|
|
|
# for path in cdm_paths:
|
|
# filename = str(path)+"\energy.txt"
|
|
# file = np.loadtxt(filename)
|
|
# print("File: "+filename+" Total mass: "+str(file[0][23])+"\n")
|
|
|
|
#For Standard DM-L50-N128, there are 2097152 particles, i.e for Nres=128. For Nres=64, there are 262144 particles.
|
|
#For our cosmos-sims, the total amount of mass is always the same: 232209.09 (units unclear!)
|
|
|
|
"""
|
|
Use this section to extract the desired data from every snapshot. Start with
|
|
a random selection of particles to enable faster testing with ParaView. Raw
|
|
String needed to read spaces; filename.with_suffix(".csv").name works thanks to
|
|
Lukas.
|
|
"""
|
|
|
|
|
|
#indices = np.random.choice(np.arange(2097152), 100000, replace=False) #for Nres=128
|
|
#indices = np.random.choice(np.arange(262144), 100000, replace=False) #for Nres=64
|
|
|
|
# directory = Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm")
|
|
directory = Path(".")
|
|
total_mass = 232209.09 #retrieved from above
|
|
Nres = 64 #choose one of this or the following:
|
|
#Nres = 128
|
|
mass_per_particle = total_mass / (Nres**3)
|
|
|
|
for filename in sorted(directory.glob("snapshot_*.hdf5")):
|
|
print(filename)
|
|
file = h5py.File(str(filename), "r")
|
|
|
|
coordinates = file["PartType1"]["Coordinates"][:] #for cdm particles
|
|
names = file["PartType1"]["ParticleIDs"][:]
|
|
velocities = file["PartType1"]["Velocities"][:]
|
|
|
|
print("building 3d-Tree")
|
|
tree = scipy.spatial.KDTree(coordinates)
|
|
print(getsizeof(tree)/1024,"KB")
|
|
print("tree built")
|
|
|
|
# coordinates = file["PartType0"]["Coordinates"][:] #for pbh particles
|
|
# names = file["PartType0"]["ParticleIDs"][:]
|
|
# velocities = file["PartType0"]["Velocities"][:]
|
|
|
|
absolute_velo = np.sqrt(np.sum(velocities**2, axis=1))
|
|
print(len(names))
|
|
|
|
print("searching neighbours")
|
|
a = time.perf_counter_ns()
|
|
closest_neighbours, indices = tree.query([coordinates], k=40, workers=6)
|
|
# shape of closest_neighbours: (1, 262144, 40)
|
|
b = time.perf_counter_ns()
|
|
print("found neighbours")
|
|
print(f"took {(b - a) / 1000 / 1000:.2f} ms")
|
|
closest_neighbours = closest_neighbours[0] # to (262144, 40)
|
|
densities = 40 * mass_per_particle / np.mean(closest_neighbours, axis=1) ** 3
|
|
|
|
print(closest_neighbours.shape)
|
|
print(densities)
|
|
print(densities.shape)
|
|
all_data = np.append(coordinates, velocities, axis=1)
|
|
all_data = np.column_stack((all_data, absolute_velo, names, densities))
|
|
sorted_index = np.argsort(all_data[::,7], kind="stable")
|
|
all_data = all_data[sorted_index, :]
|
|
|
|
# np.savetxt("out_"+filename.with_suffix(".csv").name, all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name") #if indices are needed
|
|
np.savetxt(directory/f"out_{filename.stem}.csv", all_data, delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name,density")
|
|
print(all_data.shape)
|
|
|
|
|
|
"""
|
|
This section is the old version of reading in just one file. It shows some
|
|
underlying structure and gives the option of using all data.
|
|
"""
|
|
|
|
|
|
# file = h5py.File("snapshot_000.hdf5", "r")
|
|
|
|
# configuration = file["Config"]
|
|
# header = file["Header"]
|
|
# parameters = file["Parameters"]
|
|
# data_b = file["PartType0"] #according to Oliver's program, Type_0 are the baryons and Type_1 the cdms
|
|
# coordinates_b = data_b["Coordinates"][:]
|
|
# names_b = data_b["ParticleIDs"][:]
|
|
# velocities_b = data_b["Velocities"][:]
|
|
|
|
# data_c = file["PartType1"] #all keys used here: ['Coordinates', 'ParticleIDs', 'Velocities']
|
|
# coordinates_c = data_c["Coordinates"][:]
|
|
# names_c = data_c["ParticleIDs"][:]
|
|
# velocities_c = data_c["Velocities"][:]
|
|
|
|
|
|
|
|
#print(configuration)
|
|
#print("------------")
|
|
#print(header)
|
|
#print("------------")
|
|
#print(parameters)
|
|
#print("------------")
|
|
#print(data_b) #keys contained in data_b: ['Coordinates', 'Density', 'InternalEnergy', 'ParticleIDs', 'SmoothingLength', 'Velocities']
|
|
|
|
|
|
|
|
"""
|
|
absolute_velo = np.sqrt(np.sum(velocities**2, axis=1))
|
|
|
|
all_data = np.append(coordinates, velocities, axis=1)
|
|
all_data = np.column_stack((all_data, absolute_velo, names))
|
|
sorted_index = np.argsort(all_data[::, 7], kind="stable")
|
|
all_data = all_data[sorted_index, :]
|
|
|
|
np.savetxt("out.csv", all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name")
|
|
#np.savetxt("out_all.csv", all_data, delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name")
|
|
print(all_data.shape)
|
|
"""
|
|
|
|
"""
|
|
For the plane wave test, we don't need 3-D plots, we just want to plot z-coordinates as x vs z-velocities as y.
|
|
Output times: [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
|
|
"""
|
|
|
|
"""
|
|
file = h5py.File("snapshot_000.hdf5", "r")
|
|
|
|
data_b = file["PartType0"] #according to Oliver's program, Type_0 are the baryons and Type_1 the cdms
|
|
z_b = data_b["Coordinates"][:,2]
|
|
names_b = data_b["ParticleIDs"][:]
|
|
vz_b = data_b["Velocities"][:,2]
|
|
|
|
data_c = file["PartType1"]
|
|
z_c = data_c["Coordinates"][:,2]
|
|
names_c = data_c["ParticleIDs"][:]
|
|
vz_c = data_c["Velocities"][:,2]
|
|
|
|
plt.figure()
|
|
plt.plot( z_b, vz_b, '.', label='type b' )
|
|
plt.plot( z_c, vz_c, '.', label='type c' )
|
|
plt.legend()
|
|
plt.show()
|
|
"""
|