mirror of
https://github.com/glatterf42/sims_python_files.git
synced 2024-09-10 05:43:46 +02:00
first commit
This commit is contained in:
commit
764c1358d1
20 changed files with 1647 additions and 0 deletions
47
check_ics_swift.py
Normal file
47
check_ics_swift.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 8 11:16:06 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import h5py
|
||||
from pathlib import Path
|
||||
|
||||
# directory = Path(r"/home/ben/sims/swiftsim/examples/agora/")
|
||||
# directory = Path(r"/home/ben/Pictures/Gadget4/vsc4_256/")
|
||||
directory = Path(r'/home/ben/sims/music-panphasia/test/')
|
||||
|
||||
|
||||
file = h5py.File(directory / "agora_128.hdf5", "r")
|
||||
# file = h5py.File(directory / "output_0001.hdf5", "r")
|
||||
|
||||
# file = h5py.File(directory / "cosmo_ics_gadget_256_pbh_vsc.hdf5", "r")
|
||||
|
||||
for key in file.keys():
|
||||
print(key) #for finding all header entries, which are:
|
||||
|
||||
|
||||
Header = file["Header"]
|
||||
#ICs_parameters = file["ICs_parameters"]
|
||||
PartType1 = file["PartType1"]
|
||||
Units = file["Units"]
|
||||
# PartType2 = file['PartType2']
|
||||
|
||||
print(list(Header.attrs.items()))
|
||||
|
||||
|
||||
print(PartType1.keys())
|
||||
# print(PartType2.keys())
|
||||
print(PartType1['Masses'][0:10])
|
||||
|
||||
print(PartType1['Velocities'][0:10])
|
||||
|
||||
|
||||
|
||||
# print(PartType2['Masses'][0:10])
|
||||
# print(list(Units.attrs.items()))
|
||||
|
||||
# use list(Header.attr.keys()) to list all attributes contained in the Header and .attr.values() to see their values
|
||||
# even otherwise empty things like ICs_parameters can contain such attributes
|
192
create_dir_and_write_params_g4.py
Normal file
192
create_dir_and_write_params_g4.py
Normal file
|
@ -0,0 +1,192 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Mon Jan 24 10:54:50 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from directories import g4_output_basedir
|
||||
from sys import argv
|
||||
|
||||
|
||||
def create_dir_and_write_params_g4(Nres: int, Lbox: float, waveform: str, output_basedir: Path):
|
||||
# create directory if it doesn't exist already
|
||||
outputdir = output_basedir / f"{waveform}_{Nres}_{Lbox:.0f}"
|
||||
if outputdir.exists():
|
||||
print(outputdir, "already exists. Skipping...")
|
||||
else:
|
||||
print("creating", outputdir)
|
||||
outputdir.mkdir()
|
||||
|
||||
# write param file there:
|
||||
param_script = f"""
|
||||
%---- Relevant files
|
||||
|
||||
InitCondFile \t \t /gpfs/data/fs71636/fglatter/PBH_EFD/monofonic_tests/output/{waveform}_{Nres}_{Lbox:.0f}/ics_{waveform}_{Nres}_{Lbox:.0f}
|
||||
|
||||
OutputDir \t \t /gpfs/data/fs71636/fglatter/PBH_EFD/monofonic_tests/output/{waveform}_{Nres}_{Lbox:.0f}
|
||||
|
||||
SnapshotFileBase \t snapshot
|
||||
|
||||
OutputListFilename \t /gpfs/data/fs71636/fglatter/PBH_EFD/monofonic_tests/outputs.txt
|
||||
|
||||
|
||||
%---- File formats
|
||||
|
||||
ICFormat \t 3
|
||||
|
||||
SnapFormat \t 3
|
||||
|
||||
|
||||
%---- CPU-time limits
|
||||
|
||||
TimeLimitCPU \t \t 86400 \t % 24h, in seconds
|
||||
|
||||
CpuTimeBetRestartFile \t 7200 \t % 2h, in seconds
|
||||
|
||||
|
||||
%---- Memory allocation
|
||||
|
||||
MaxMemSize \t 1800 \t % in MByte
|
||||
|
||||
|
||||
%---- Characteristics of run
|
||||
|
||||
TimeBegin \t 0.02 \t % Begin of the simulation, z=49
|
||||
|
||||
TimeMax \t 1.0 \t % End of the simulation, z=0
|
||||
|
||||
|
||||
%---- Basic code options that set the type of simulation
|
||||
|
||||
ComovingIntegrationOn \t 1
|
||||
|
||||
|
||||
%---- Cosmological parameters #update according to monofonic output
|
||||
|
||||
Omega0 \t \t \t \t 0.3099
|
||||
|
||||
OmegaLambda \t \t \t \t 0.690021
|
||||
|
||||
OmegaBaryon \t \t \t \t 0.0488911
|
||||
|
||||
HubbleParam \t \t \t \t 0.67742
|
||||
|
||||
Hubble \t \t \t \t 100.0
|
||||
|
||||
BoxSize \t \t \t \t {Lbox}
|
||||
#
|
||||
# MeanPBHScatteringCrossSection \t 1.73189e-13
|
||||
#
|
||||
# AveragePBHMass \t \t \t 3.086978e-10
|
||||
#
|
||||
# SigmaOverM \t \t \t \t 5.6103e-4
|
||||
|
||||
|
||||
%---- Output frequency and output parameters
|
||||
|
||||
OutputListOn \t \t \t 1
|
||||
|
||||
TimeBetSnapshot \t \t \t 0.0
|
||||
|
||||
TimeOfFirstSnapshot \t \t 0.0
|
||||
|
||||
TimeBetStatistics \t \t 0.01
|
||||
|
||||
NumFilesPerSnapshot \t \t 1
|
||||
|
||||
MaxFilesWithConcurrentIO \t 1
|
||||
|
||||
|
||||
%---- Accuracy of time integration
|
||||
|
||||
ErrTolIntAccuracy \t \t 0.025
|
||||
|
||||
CourantFac \t \t \t 0.7
|
||||
|
||||
MaxSizeTimestep \t \t 0.025
|
||||
|
||||
MinSizeTimestep \t \t 0.0
|
||||
|
||||
|
||||
%---- Tree algorithm, force accuracy, domain update frequency
|
||||
|
||||
TypeOfOpeningCriterion \t \t 1
|
||||
|
||||
ErrTolTheta \t \t \t \t 0.5
|
||||
|
||||
ErrTolThetaMax \t \t \t 1.0
|
||||
|
||||
ErrTolForceAcc \t \t \t 0.002
|
||||
|
||||
TopNodeFactor \t \t \t \t 3.0
|
||||
|
||||
ActivePartFracForNewDomainDecomp \t 0.01
|
||||
|
||||
ActivePartFracForPMinsteadOfEwald \t 0.05
|
||||
|
||||
|
||||
%---- Initial density estimate
|
||||
|
||||
DesNumNgb \t \t 64
|
||||
|
||||
MaxNumNgbDeviation \t 1
|
||||
|
||||
|
||||
%---- Subfind parameters
|
||||
|
||||
DesLinkNgb \t \t 20
|
||||
|
||||
|
||||
%---- System of units
|
||||
|
||||
UnitLength_in_cm \t \t 3.086578e24 \t ; Mpc/h
|
||||
|
||||
UnitMass_in_g \t \t \t 1.989e43 \t ; 1.0e10 Msun/h
|
||||
|
||||
UnitVelocity_in_cm_per_s \t 1e5 \t ; 1km/s
|
||||
|
||||
GravityConstantInternal \t 0
|
||||
|
||||
|
||||
%---- Gravitational softening length
|
||||
|
||||
SofteningComovingClass0 \t {Lbox / Nres / 30}
|
||||
|
||||
SofteningMaxPhysClass0 \t {Lbox / Nres / 30}
|
||||
|
||||
SofteningClassOfPartType0 \t 0
|
||||
|
||||
SofteningClassOfPartType1 \t 0
|
||||
|
||||
SofteningClassOfPartType2 \t 0
|
||||
|
||||
SofteningClassOfPartType3 \t 0
|
||||
|
||||
SofteningClassOfPartType4 \t 0
|
||||
|
||||
SofteningClassOfPartType5 \t 0
|
||||
|
||||
|
||||
%---- SPH
|
||||
|
||||
ArtBulkViscConst \t 1.0
|
||||
|
||||
MinEgySpec \t \t 0
|
||||
|
||||
InitGasTemp \t \t 10
|
||||
"""
|
||||
|
||||
with (outputdir / f"{waveform}_{Nres}_{Lbox:.0f}_param.txt").open("w") as f:
|
||||
f.write(param_script)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
create_dir_and_write_params_g4(
|
||||
Nres=int(argv[1]),
|
||||
Lbox=float(argv[2]),
|
||||
waveform=argv[3],
|
||||
output_basedir=g4_output_basedir
|
||||
)
|
171
create_dir_and_write_params_swift.py
Normal file
171
create_dir_and_write_params_swift.py
Normal file
|
@ -0,0 +1,171 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Mar 4 13:43:40 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from directories import swift_output_basedir, swift_mon_test_basedir
|
||||
from sys import argv
|
||||
|
||||
def create_dir_and_write_params_swift(Nres: int, Lbox: float, waveform: str, output_basedir: Path):
|
||||
# create directory if it doesn't exist already
|
||||
outputdir = output_basedir / f"{waveform}_{Nres}_{Lbox:.0f}"
|
||||
if outputdir.exists():
|
||||
print(outputdir, "already exists. Skipping...")
|
||||
else:
|
||||
print("creating", outputdir)
|
||||
outputdir.mkdir()
|
||||
|
||||
# write param file there:
|
||||
param_script = f"""
|
||||
# Define some meta data about the simulation.
|
||||
MetaData:
|
||||
run_name: mon_test_{waveform}_{Nres}_{Lbox:.0f}
|
||||
|
||||
# Define the system of units to use internally.
|
||||
InternalUnitSystem:
|
||||
UnitMass_in_cgs: 1.98848e43 # 10^10 M_sun in grams
|
||||
UnitLength_in_cgs: 3.08567758e24 # 1 Mpc in centimeters
|
||||
UnitVelocity_in_cgs: 1e5 # 1 km/s in centimeters per second
|
||||
UnitCurrent_in_cgs: 1 # 1 Ampere
|
||||
UnitTemp_in_cgs: 1 # 1 Kelvin
|
||||
|
||||
|
||||
# Values of some physical constants
|
||||
#PhysicalConstants:
|
||||
# G: 6.67408e-8 # (Optional) Overwrite the value of Newton's constant used internally by the code.
|
||||
|
||||
# Cosmological parameters # update according to monofonic output
|
||||
Cosmology:
|
||||
h: 0.67742 # Reduced Hubble constant
|
||||
a_begin: 0.02 # Initial scale-factor of the simulation, z = 49
|
||||
a_end: 1.0 # Final scale factor of the simulation, z = 0
|
||||
Omega_cdm: 0.2610089 # CDM density parameter, new: Omega_m = _cdm + _b (w/o neutrinos)
|
||||
Omega_lambda: 0.690021 # Dark-energy density parameter
|
||||
Omega_b: 0.0488911 # Baryon density parameter
|
||||
|
||||
# Parameters for the self-gravity scheme
|
||||
Gravity:
|
||||
mesh_side_length: {Nres * 2}# Number of cells along each axis for the periodic gravity mesh (must be even).
|
||||
eta: 0.025 # Constant dimensionless multiplier for time integration.
|
||||
MAC: adaptive # Choice of mulitpole acceptance criterion: 'adaptive' OR 'geometric'.
|
||||
epsilon_fmm: 0.001 # Tolerance parameter for the adaptive multipole acceptance criterion.
|
||||
theta_cr: 0.7 # Opening angle for the purely gemoetric criterion.
|
||||
# use_tree_below_softening: 0 # (Optional) Can the gravity code use the multipole interactions below the softening scale?
|
||||
# allow_truncation_in_MAC: 0 # (Optional) Can the Multipole acceptance criterion use the truncated force estimator?
|
||||
comoving_DM_softening: {Lbox / Nres / 30} # Comoving Plummer-equivalent softening length for DM particles (in internal units).
|
||||
max_physical_DM_softening: {Lbox / Nres / 30} # Maximal Plummer-equivalent softening length in physical coordinates for DM particles (in internal units). #should work b/c Lbox is given in Mpc=internal unit
|
||||
rebuild_frequency: 0.01 # (Optional) Frequency of the gravity-tree rebuild in units of the number of g-particles (this is the default value).
|
||||
a_smooth: 1.25 # (Optional) Smoothing scale in top-level cell sizes to smooth the long-range forces over (this is the default value).
|
||||
r_cut_max: 4.5 # (Optional) Cut-off in number of top-level cells beyond which no FMM forces are computed (this is the default value).
|
||||
r_cut_min: 0.1 # (Optional) Cut-off in number of top-level cells below which no truncation of FMM forces are performed (this is the default value).
|
||||
|
||||
# FOF group finding parameters
|
||||
FOF:
|
||||
basename: fof_output # Filename for the FOF outputs (Unused when FoF is only run to seed BHs).
|
||||
scale_factor_first: 0.91 # Scale-factor of first FoF black hole seeding calls (needed for cosmological runs).
|
||||
delta_time: 1.005 # Time between consecutive FoF black hole seeding calls.
|
||||
min_group_size: 256 # The minimum no. of particles required for a group.
|
||||
linking_length_ratio: 0.2 # Linking length in units of the main inter-particle separation.
|
||||
seed_black_holes_enabled: 0 # Enable (1) or disable (0) seeding of black holes in FoF groups
|
||||
dump_catalogue_when_seeding: 0 # Enable (1) or disable (0) dumping a group catalogue when runnning FOF for seeding purposes.
|
||||
absolute_linking_length: -1. # (Optional) Absolute linking length (in internal units). When not set to -1, this will overwrite the linking length computed from 'linking_length_ratio'.
|
||||
group_id_default: 2147483647 # (Optional) Sets the group ID of particles in groups below the minimum size. Defaults to 2^31 - 1 if unspecified. Has to be positive.
|
||||
group_id_offset: 1 # (Optional) Sets the offset of group ID labeling. Defaults to 1 if unspecified.
|
||||
|
||||
# Parameters governing the time integration (Set dt_min and dt_max to the same value for a fixed time-step run.)
|
||||
TimeIntegration:
|
||||
dt_min: 1e-6 # The minimal time-step size of the simulation (in internal units).
|
||||
dt_max: 0.025 # The maximal time-step size of the simulation (in internal units).
|
||||
|
||||
# Parameters governing the snapshots
|
||||
Snapshots:
|
||||
basename: output # Common part of the name of output files.
|
||||
# subdir: dir # (Optional) Sub-directory in which to write the snapshots. Defaults to "" (i.e. the directory where SWIFT is run).
|
||||
scale_factor_first: 0.1 # (Optional) Scale-factor of the first snapshot if cosmological time-integration.
|
||||
delta_time: 0.01 # Time difference between consecutive outputs (in internal units)
|
||||
# invoke_stf: 0 # (Optional) Call VELOCIraptor every time a snapshot is written irrespective of the VELOCIraptor output strategy.
|
||||
invoke_fof: 1 # (Optional) Call FOF every time a snapshot is written
|
||||
# compression: 0 # (Optional) Set the level of GZIP compression of the HDF5 datasets [0-9]. 0 does no compression. The lossless compression is applied to *all* the fields.
|
||||
# distributed: 0 # (Optional) When running over MPI, should each rank write a partial snapshot or do we want a single file? 1 implies one file per MPI rank.
|
||||
# UnitMass_in_cgs: 1 # (Optional) Unit system for the outputs (Grams)
|
||||
# UnitLength_in_cgs: 1 # (Optional) Unit system for the outputs (Centimeters)
|
||||
# UnitVelocity_in_cgs: 1 # (Optional) Unit system for the outputs (Centimeters per second)
|
||||
# UnitCurrent_in_cgs: 1 # (Optional) Unit system for the outputs (Amperes)
|
||||
# UnitTemp_in_cgs: 1 # (Optional) Unit system for the outputs (Kelvin)
|
||||
output_list_on: 1 # (Optional) Enable the output list
|
||||
output_list: {swift_mon_test_basedir}/snap_times.txt # (Optional) File containing the output times (see documentation in "Parameter File" section)
|
||||
# select_output_on: 0 # (Optional) Enable the output selection behaviour
|
||||
# select_output: selectoutput.yml # (Optional) File containing information to select outputs with (see documentation in the "Output Selection" section)
|
||||
|
||||
# Parameters governing the conserved quantities statistics
|
||||
Statistics:
|
||||
delta_time: 1.1 # Time between statistics output
|
||||
scale_factor_first: 0.1 # (Optional) Scale-factor of the first statistics dump if cosmological time-integration.
|
||||
energy_file_name: statistics # (Optional) File name for statistics output
|
||||
timestep_file_name: timesteps # (Optional) File name for timing information output. Note: No underscores "_" allowed in file name
|
||||
output_list_on: 1 # (Optional) Enable the output list
|
||||
output_list: {swift_mon_test_basedir}/snap_times.txt # (Optional) File containing the output times (see documentation in "Parameter File" section)
|
||||
|
||||
# Parameters related to the initial conditions
|
||||
InitialConditions:
|
||||
file_name: {swift_output_basedir}/{waveform}_{Nres}_{Lbox:.0f}/ics_{waveform}_{Nres}_{Lbox:.0f}.hdf5 # The file to read
|
||||
periodic: 1 # Are we running with periodic ICs?
|
||||
cleanup_h_factors: 0 # (Optional) Clean up the h-factors used in the ICs (e.g. in Gadget files).
|
||||
cleanup_velocity_factors: 0 # (Optional) Clean up the scale-factors used in the definition of the velocity variable in the ICs (e.g. in Gadget files).
|
||||
cleanup_smoothing_lengths: 0 # (Optional) Clean the values of the smoothing lengths that are read in to remove stupid values. Set to 1 to activate.
|
||||
smoothing_length_scaling: 1. # (Optional) A scaling factor to apply to all smoothing lengths in the ICs.
|
||||
replicate: 1 # (Optional) Replicate all particles along each axis a given integer number of times. Default 1.
|
||||
remap_ids: 0 # (Optional) Remap all the particle IDs to the range [1, NumPart].
|
||||
metadata_group_name: ICs_parameters # (Optional) Copy this HDF5 group from the initial conditions file to all snapshots, if found
|
||||
|
||||
# Parameters controlling restarts
|
||||
Restarts:
|
||||
enable: 1 # (Optional) whether to enable dumping restarts at fixed intervals.
|
||||
save: 0 # (Optional) whether to save copies of the previous set of restart files (named .prev)
|
||||
# onexit: 0 # (Optional) whether to dump restarts on exit (*needs enable*)
|
||||
subdir: restart # (Optional) name of subdirectory for restart files.
|
||||
basename: restart # (Optional) prefix used in naming restart files.
|
||||
delta_hours: 2.0 # (Optional) decimal hours between dumps of restart files.
|
||||
stop_steps: 100 # (Optional) how many steps to process before checking if the <subdir>/stop file exists. When present the application will attempt to exit early, dumping restart files first.
|
||||
max_run_time: 24.0 # (optional) Maximal wall-clock time in hours. The application will exit when this limit is reached.
|
||||
# resubmit_on_exit: 0 # (Optional) whether to run a command when exiting after the time limit has been reached.
|
||||
# resubmit_command: ./resub.sh # (Optional) Command to run when time limit is reached. Compulsory if resubmit_on_exit is switched on. Note potentially unsafe.
|
||||
|
||||
# Parameters governing domain decomposition
|
||||
# DomainDecomposition:
|
||||
# initial_type: memory # (Optional) The initial decomposition strategy: "grid",
|
||||
# # "region", "memory", or "vectorized".
|
||||
# initial_grid: [10,10,10] # (Optional) Grid sizes if the "grid" strategy is chosen.
|
||||
|
||||
# synchronous: 0 # (Optional) Use synchronous MPI requests to redistribute, uses less system memory, but slower.
|
||||
# repartition_type: fullcosts # (Optional) The re-decomposition strategy, one of:
|
||||
# # "none", "fullcosts", "edgecosts", "memory" or
|
||||
# # "timecosts".
|
||||
# trigger: 0.05 # (Optional) Fractional (<1) CPU time difference between MPI ranks required to trigger a
|
||||
# # new decomposition, or number of steps (>1) between decompositions
|
||||
# minfrac: 0.9 # (Optional) Fractional of all particles that should be updated in previous step when
|
||||
# # using CPU time trigger
|
||||
# usemetis: 0 # Use serial METIS when ParMETIS is also available.
|
||||
# adaptive: 1 # Use adaptive repartition when ParMETIS is available, otherwise simple refinement.
|
||||
# itr: 100 # When adaptive defines the ratio of inter node communication time to data redistribution time, in the range 0.00001 to 10000000.0.
|
||||
# # Lower values give less data movement during redistributions, at the cost of global balance which may require more communication.
|
||||
# use_fixed_costs: 0 # If 1 then use any compiled in fixed costs for
|
||||
# # task weights in first repartition, if 0 only use task timings, if > 1 only use
|
||||
# # fixed costs, unless none are available
|
||||
"""
|
||||
|
||||
with (outputdir / f"{waveform}_{Nres}_{Lbox:.0f}_param.yml").open("w") as f:
|
||||
f.write(param_script)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
create_dir_and_write_params_swift(
|
||||
Nres=int(argv[1]),
|
||||
Lbox=float(argv[2]),
|
||||
waveform=argv[3],
|
||||
output_basedir=swift_output_basedir
|
||||
)
|
187
density_profiles_preparation.py
Normal file
187
density_profiles_preparation.py
Normal file
|
@ -0,0 +1,187 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Jul 20 15:03:28 2021
|
||||
|
||||
@author: Ben Melville
|
||||
"""
|
||||
|
||||
|
||||
import h5py
|
||||
from pathlib import Path
|
||||
#import matplotlib.pyplot as plt
|
||||
from scipy.spatial import KDTree #for nearest neighbour search
|
||||
import numpy as np
|
||||
import numba
|
||||
|
||||
|
||||
def determine_desired_range(offset, minimum, upper_limit_bottom, lower_limit_top, maximum):
|
||||
a = minimum
|
||||
b = maximum
|
||||
|
||||
if offset < 0:
|
||||
a = lower_limit_top
|
||||
elif offset > 0:
|
||||
b = upper_limit_bottom
|
||||
|
||||
return a,b
|
||||
|
||||
|
||||
@numba.njit()
|
||||
def find_coordinates_to_move(minimum, maximum, ratio, x_offset, y_offset, z_offset, move_candidates):
|
||||
coordinates_to_move = []
|
||||
x_start, x_end = determine_desired_range(x_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
y_start, y_end = determine_desired_range(y_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
z_start, z_end = determine_desired_range(z_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
|
||||
for point in move_candidates:
|
||||
if x_start <= point[0] <= x_end and y_start <= point[1] <= y_end and z_start <= point[2] <= z_end:
|
||||
coordinates_to_move.append(point)
|
||||
|
||||
return coordinates_to_move
|
||||
|
||||
|
||||
directory = Path(r".\256_pbh_fast_10sigma")
|
||||
# total_mass = 232209.09 #retrieved from visualisation.py
|
||||
# #Choose one of the following Nres values:
|
||||
# Nres = 64
|
||||
# #Nres = 128
|
||||
# mass_per_particle = total_mass / (Nres**3)
|
||||
|
||||
|
||||
# file = h5py.File(directory / "fof_subhalo_tab_038.hdf5", "r") #for whole duration
|
||||
# file = h5py.File(directory / "fof_subhalo_tab_018.hdf5", "r") #for small boxes
|
||||
file = h5py.File(directory / "fof_subhalo_tab_016.hdf5", "r") #for e5 boxes 256
|
||||
|
||||
# for key in file.keys():
|
||||
# print(key)
|
||||
|
||||
|
||||
configuration = file["Config"] #appears to be empty
|
||||
header = file["Header"] #appears to be empty
|
||||
ids = file["IDs"] #appears to be empty
|
||||
parameters = file["Parameters"] #appears to be empty
|
||||
group = file["Group"] #contains ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']
|
||||
subhalo = file["Subhalo"] #contains ['SubhaloCM', 'SubhaloGroupNr', 'SubhaloHalfmassRad', 'SubhaloHalfmassRadType', 'SubhaloIDMostbound', 'SubhaloLen', 'SubhaloLenType', 'SubhaloMass', 'SubhaloMassType', 'SubhaloOffsetType', 'SubhaloParentRank', 'SubhaloPos', 'SubhaloRankInGr', 'SubhaloSpin', 'SubhaloVel', 'SubhaloVelDisp', 'SubhaloVmax', 'SubhaloVmaxRad']
|
||||
|
||||
# file = h5py.File(str(directory)+r"\subhalo_snapshot_038.hdf5", "r")
|
||||
|
||||
# configuration = file["Config"] #appears to be empty
|
||||
# header = file["Header"] #appears to be empty
|
||||
# parameters = file["Parameters"] #appears to be empty
|
||||
# parttype1 = file["PartType1"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
|
||||
|
||||
group_positions = group["GroupPos"][:]
|
||||
group_radii = group["Group_R_Crit200"][:]
|
||||
group_masses = group["Group_M_Crit200"][:]
|
||||
|
||||
# file = h5py.File(directory / "subhalo_snapshot_038.hdf5", "r") #for whole duration
|
||||
# file = h5py.File(directory / "snapshot_018.hdf5", "r") #for small boxes
|
||||
file = h5py.File(directory / "snapshot_016.hdf5", "r") #for e5 boxes 256
|
||||
|
||||
# parttype1 = file["PartType1"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
|
||||
# original_coordinates = file["PartType1"]["Coordinates"][:] #for cdm particles
|
||||
|
||||
parttype1 = file["PartType0"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
|
||||
original_coordinates = file["PartType0"]["Coordinates"][:] #for pbh particles
|
||||
|
||||
|
||||
# boundaries = [30., 30., 30.] #BoxLength in MonofonIC is 30.
|
||||
# boundaries = [2.77048, 2.77048, 2.77048] #BoxLength for small boxes depends on Nres, 2.77048 for 64, 5.54096 for 128.
|
||||
boundaries = [2.36438, 2.36438, 2.36438] #BoxLength for e5 boxes depends on Nres, 2.36438 for 256, 4.72876 for 512.
|
||||
|
||||
|
||||
offsets = [-1, 0, 1]
|
||||
coordinates = original_coordinates[:]
|
||||
number_of_time_that_points_have_been_found = 0
|
||||
|
||||
#assumes cube form and 0.1 as desired ratio to move
|
||||
minimum = 0.0
|
||||
maximum = max(boundaries)
|
||||
ratio = 0.1
|
||||
box_length = maximum - minimum
|
||||
range_to_move = 0.1 * box_length
|
||||
upper_limit_bottom = minimum + range_to_move
|
||||
lower_limit_top = maximum - range_to_move
|
||||
|
||||
print("Find candidates to move...")
|
||||
|
||||
@numba.njit()
|
||||
def find_move_candidates():
|
||||
move_candidates = []
|
||||
for point in original_coordinates:
|
||||
if{
|
||||
minimum <= point[0] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[0] <= maximum or
|
||||
minimum <= point[1] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[1] <= maximum or
|
||||
minimum <= point[2] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[2] <= maximum
|
||||
}:
|
||||
move_candidates.append(point)
|
||||
return move_candidates
|
||||
|
||||
move_candidates = find_move_candidates()
|
||||
print("...done.")
|
||||
|
||||
for x in offsets:
|
||||
for y in offsets:
|
||||
for z in offsets:
|
||||
if (x, y, z) == (0, 0, 0):
|
||||
continue
|
||||
moved_coordinates = find_coordinates_to_move(minimum, maximum, ratio, x, y, z, move_candidates)
|
||||
moved_coordinates += np.array([x * boundaries[0], y * boundaries[1], z * boundaries[2]])
|
||||
coordinates = np.vstack((coordinates, moved_coordinates))
|
||||
number_of_time_that_points_have_been_found += 1
|
||||
print("Points found: " + str(number_of_time_that_points_have_been_found) + "/26...")
|
||||
|
||||
# assert coordinates.shape[0] == original_coordinates.shape[0] * 3 ** 3 #check that the new space has the shape we want it to have
|
||||
|
||||
print("Building 3d-Tree for all particles...")
|
||||
tree = KDTree(coordinates)
|
||||
print("...done.")
|
||||
|
||||
print("Searching group members...")
|
||||
group_member_indices = tree.query_ball_point(group_positions, group_radii, workers=6)
|
||||
assert len(group_member_indices) == len(group_positions)
|
||||
print("...found.")
|
||||
|
||||
print("Calculating radial bins and saving data...")
|
||||
for i in range(len(group_positions)):
|
||||
group_center = group_positions[i]
|
||||
group_radius = group_radii[i]
|
||||
group_mass = group_masses[i]
|
||||
if group_radius == 0 or group_mass == 0:
|
||||
continue #Not quite sure how this can happen, but apparently there are groups with a radius or mass of zero (and they are not necessarily the same).
|
||||
radial_bins = np.arange(0, group_radius + group_radius/10, group_radius/10)
|
||||
members = [coordinates[j] for j in group_member_indices[i]]
|
||||
members_in_bins = [] #should better be called distances now
|
||||
|
||||
for member in members:
|
||||
distance = np.linalg.norm(group_center - member)
|
||||
members_in_bins.append(distance)
|
||||
#The following already sorts into bins, but that's not ideal for changing bins to e.g. logarithmic values.
|
||||
# for r in range(len(radial_bins)-1): #-1 because no value is going to be above radial_bins[10] anyway
|
||||
# if radial_bins[r] <= distance < radial_bins[r + 1]:
|
||||
# members_in_bins.append(radial_bins[r] + group_radius/20)
|
||||
assert len(members) == len(members_in_bins)
|
||||
|
||||
group_ID = [i+1] * len(members)
|
||||
group_radius_list = [group_radius] * len(members)
|
||||
group_mass_list = [group_mass] * len(members)
|
||||
|
||||
all_data = np.column_stack((group_ID, group_radius_list, group_mass_list, members_in_bins))
|
||||
np.savetxt(directory/"density_profiles_16"/f"group{i+1}.csv", all_data, delimiter=",", fmt="%.3f", header="ID,R200,M200,Bin")
|
||||
print("...done.")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
23
directories.py
Normal file
23
directories.py
Normal file
|
@ -0,0 +1,23 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:08:54 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
g4_basedir = Path("/gpfs/data/fs71636/fglatter/PBH_EFD/monofonic_tests/")
|
||||
g4_output_basedir = Path("/gpfs/data/fs71636/fglatter/PBH_EFD/monofonic_tests/output/")
|
||||
|
||||
swift_basedir = Path("/gpfs/data/fs71636/fglatter/swiftsim/")
|
||||
swift_mon_test_basedir = Path("/gpfs/data/fs71636/fglatter/swiftsim/monofonic_tests/")
|
||||
swift_output_basedir = Path("/gpfs/data/fs71636/fglatter/swiftsim/monofonic_tests/output/")
|
||||
swift_tool_basedir = Path("/gpfs/data/fs71636/fglatter/swiftsim/tools/")
|
||||
|
||||
python_base = Path("/gpfs/data/fs71636/fglatter/python_files/")
|
||||
|
||||
monofonic_dir = Path("/gpfs/data/fs71636/fglatter/monofonic-experimental")
|
||||
template_file = monofonic_dir / "example.conf"
|
||||
# monofonic_binary = monofonic_dir / "build" / "monofonIC"
|
64
get_mass_zoom_halo.py
Normal file
64
get_mass_zoom_halo.py
Normal file
|
@ -0,0 +1,64 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Mar 8 11:16:06 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import h5py
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
|
||||
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/")
|
||||
|
||||
snap_number = 7
|
||||
|
||||
fof_file = h5py.File(directory / f"fof_output_000{snap_number}.hdf5", "r")
|
||||
file = h5py.File(directory / f'output_000{snap_number}.hdf5', 'r')
|
||||
|
||||
PartType1 = file["PartType1"]
|
||||
highres_groupids = PartType1['FOFGroupIDs'][:]
|
||||
|
||||
total_highres_particles = len(highres_groupids)
|
||||
unique_groups, particle_count = np.unique(highres_groupids, return_counts=True)
|
||||
print(f'Group IDs: {unique_groups}, Number in them: {particle_count}')
|
||||
|
||||
# all particles belonging to no group have group id 2147483647
|
||||
|
||||
|
||||
# for key in fof_file.keys():
|
||||
# print(key) #for finding all header entries, which are:
|
||||
|
||||
groups = fof_file['Groups']
|
||||
|
||||
# for key in groups.keys():
|
||||
# print(key)
|
||||
|
||||
|
||||
# centres = groups['Centres'][:]
|
||||
groupids = groups['GroupIDs'][:]
|
||||
masses = groups['Masses'][:]
|
||||
number_of_members = groups['Sizes'][:]
|
||||
|
||||
table_width = 4
|
||||
|
||||
separate_unique_counter = 0
|
||||
for i in range(len(groupids)-1):
|
||||
if np.isin(groupids[i], unique_groups):
|
||||
highres_members = particle_count[separate_unique_counter]
|
||||
contamination = (1 - highres_members / number_of_members[i])
|
||||
print(f'Group: {groupids[i]:{table_width}} | Mass: {masses[i]:{table_width + 1}.{table_width}} | Highres Members: {highres_members:{table_width}} | Total Members: {number_of_members[i]:{table_width}} | Contamination: {contamination * 100:.{table_width}}%\n')
|
||||
separate_unique_counter += 1
|
||||
|
||||
|
||||
# for i in range(10):
|
||||
# print(f'Group: {groupids[i]} | Mass: {masses[i]} | Size: {sizes[i]} | Centre: {centres[i]}\n')
|
||||
|
||||
|
||||
|
||||
# print(list(parameters.attrs.items()))
|
||||
|
||||
|
||||
# use list(Header.attr.keys()) to list all attributes contained in the Header and .attr.values() to see their values
|
||||
# even otherwise empty things like ICs_parameters can contain such attributes
|
60
prepare_simulations.py
Normal file
60
prepare_simulations.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:59:03 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from write_monofonic_conf import generate_config
|
||||
from pathlib import Path
|
||||
from create_dir_and_write_params_g4 import create_dir_and_write_params_g4
|
||||
from directories import g4_output_basedir
|
||||
from write_job_script import write_job_script
|
||||
|
||||
|
||||
def main(Nres: int, Lbox: float, waveforms: list):
|
||||
for form in waveforms:
|
||||
#write monofonic conf from template file
|
||||
generate_config(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
outputdir = Path(f"/gpfs/data/fs71636/fglatter/monofonic_exp_{form}/"),
|
||||
waveform = form
|
||||
)
|
||||
|
||||
#create directory in g4_output_basedir and write param file for G4 there
|
||||
create_dir_and_write_params_g4(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_basedir = g4_output_basedir
|
||||
)
|
||||
|
||||
#write job scripts
|
||||
write_job_script(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_dir = g4_output_basedir / f"{form}_{Nres}_{Lbox:.0f}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if argv[3] == "all":
|
||||
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
|
||||
else:
|
||||
waveforms = argv[3:len(argv)]
|
||||
|
||||
assert len(waveforms) <= 6
|
||||
|
||||
Nres = int(argv[1])
|
||||
Lbox = float(argv[2])
|
||||
|
||||
main(
|
||||
Nres=Nres,
|
||||
Lbox=Lbox,
|
||||
waveforms=waveforms
|
||||
)
|
||||
|
60
prepare_simulations_g4.py
Normal file
60
prepare_simulations_g4.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:59:03 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from write_monofonic_conf import generate_config
|
||||
from pathlib import Path
|
||||
from create_dir_and_write_params_g4 import create_dir_and_write_params_g4
|
||||
from directories import g4_output_basedir
|
||||
from write_job_script import write_job_script
|
||||
|
||||
|
||||
def main(Nres: int, Lbox: float, waveforms: list):
|
||||
for form in waveforms:
|
||||
#write monofonic conf from template file
|
||||
generate_config(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
outputdir = Path(f"/gpfs/data/fs71636/fglatter/monofonic_exp_{form}/"),
|
||||
waveform = form
|
||||
)
|
||||
|
||||
#create directory in g4_output_basedir and write param file for G4 there
|
||||
create_dir_and_write_params_g4(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_basedir = g4_output_basedir
|
||||
)
|
||||
|
||||
#write job scripts
|
||||
write_job_script(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_dir = g4_output_basedir / f"{form}_{Nres}_{Lbox:.0f}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if argv[3] == "all":
|
||||
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
|
||||
else:
|
||||
waveforms = argv[3:len(argv)]
|
||||
|
||||
assert len(waveforms) <= 6
|
||||
|
||||
Nres = int(argv[1])
|
||||
Lbox = float(argv[2])
|
||||
|
||||
main(
|
||||
Nres=Nres,
|
||||
Lbox=Lbox,
|
||||
waveforms=waveforms
|
||||
)
|
||||
|
60
prepare_simulations_swift.py
Normal file
60
prepare_simulations_swift.py
Normal file
|
@ -0,0 +1,60 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:59:03 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
from sys import argv
|
||||
from write_monofonic_conf import generate_config
|
||||
from pathlib import Path
|
||||
from create_dir_and_write_params_swift import create_dir_and_write_params_swift
|
||||
from directories import swift_output_basedir
|
||||
from write_job_script_swift import write_job_script
|
||||
|
||||
|
||||
def main(Nres: int, Lbox: float, waveforms: list):
|
||||
for form in waveforms:
|
||||
#write monofonic conf from template file
|
||||
generate_config(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
outputdir = Path(f"/gpfs/data/fs71636/fglatter/monofonic_exp_{form}/"),
|
||||
waveform = form
|
||||
)
|
||||
|
||||
#create directory in swift_output_basedir and write param file for swift there
|
||||
create_dir_and_write_params_swift(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_basedir = swift_output_basedir
|
||||
)
|
||||
|
||||
#write job scripts
|
||||
write_job_script(
|
||||
Nres = Nres,
|
||||
Lbox = Lbox,
|
||||
waveform = form,
|
||||
output_dir = swift_output_basedir / f"{form}_{Nres}_{Lbox:.0f}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if argv[3] == "all":
|
||||
waveforms = ["DB2", "DB4", "DB6", "DB8", "DB10", "shannon"]
|
||||
else:
|
||||
waveforms = argv[3:len(argv)]
|
||||
|
||||
assert len(waveforms) <= 6
|
||||
|
||||
Nres = int(argv[1])
|
||||
Lbox = float(argv[2])
|
||||
|
||||
main(
|
||||
Nres=Nres,
|
||||
Lbox=Lbox,
|
||||
waveforms=waveforms
|
||||
)
|
||||
|
28
rename_and_move_ics.py
Normal file
28
rename_and_move_ics.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 17:25:58 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from sys import argv
|
||||
|
||||
def rename_and_move_ics(n_tasks: int, source_dir: Path, dest_dir: Path, waveform: str, Nres: int, Lbox: float):
|
||||
for i in range(n_tasks):
|
||||
source_file = source_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.hdf5.{i}"
|
||||
dest_file = dest_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.{i}.hdf5"
|
||||
shutil.move(source_file, dest_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rename_and_move_ics(
|
||||
n_tasks = int(argv[1]),
|
||||
source_dir = Path(argv[2]),
|
||||
dest_dir = Path(argv[3]),
|
||||
waveform = str(argv[4]),
|
||||
Nres = int(argv[5]),
|
||||
Lbox = float(argv[6])
|
||||
)
|
28
rename_and_move_ics_g4.py
Normal file
28
rename_and_move_ics_g4.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 17:25:58 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from sys import argv
|
||||
|
||||
def rename_and_move_ics(n_tasks: int, source_dir: Path, dest_dir: Path, waveform: str, Nres: int, Lbox: float):
|
||||
for i in range(n_tasks):
|
||||
source_file = source_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.hdf5.{i}"
|
||||
dest_file = dest_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.{i}.hdf5"
|
||||
shutil.move(source_file, dest_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rename_and_move_ics(
|
||||
n_tasks = int(argv[1]),
|
||||
source_dir = Path(argv[2]),
|
||||
dest_dir = Path(argv[3]),
|
||||
waveform = str(argv[4]),
|
||||
Nres = int(argv[5]),
|
||||
Lbox = float(argv[6])
|
||||
)
|
28
rename_and_move_ics_swift.py
Normal file
28
rename_and_move_ics_swift.py
Normal file
|
@ -0,0 +1,28 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 17:25:58 2022
|
||||
|
||||
@author: ben
|
||||
"""
|
||||
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
from sys import argv
|
||||
|
||||
def rename_and_move_ics(n_tasks: int, source_dir: Path, dest_dir: Path, waveform: str, Nres: int, Lbox: float):
|
||||
for i in range(n_tasks):
|
||||
source_file = source_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.hdf5"
|
||||
dest_file = dest_dir / f"ics_{waveform}_{Nres}_{Lbox:.0f}.hdf5"
|
||||
shutil.move(source_file, dest_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rename_and_move_ics(
|
||||
n_tasks = int(argv[1]),
|
||||
source_dir = Path(argv[2]),
|
||||
dest_dir = Path(argv[3]),
|
||||
waveform = str(argv[4]),
|
||||
Nres = int(argv[5]),
|
||||
Lbox = float(argv[6])
|
||||
)
|
177
visualisation.py
Normal file
177
visualisation.py
Normal file
|
@ -0,0 +1,177 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Wed Mar 11 19:11:42 2021
|
||||
|
||||
@author: Ben Melville
|
||||
"""
|
||||
import time
|
||||
from pathlib import Path
|
||||
from sys import getsizeof
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import scipy.spatial
|
||||
|
||||
"""
|
||||
Use this section to find out how many particles there are. The second part retrieves the total mass of cdm or pbh particles, which is all we need because we only have one type of particle in every simulation.
|
||||
"""
|
||||
|
||||
# paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_pbh"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_pbh")]
|
||||
cdm_paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_cdm")]
|
||||
pbh_paths = [Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_pbh"), Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\128_pbh")]
|
||||
|
||||
|
||||
# for path in pbh_paths:
|
||||
# file = h5py.File(str(path)+"\snapshot_000.hdf5", "r")
|
||||
# names = file["PartType0"]["ParticleIDs"][:]
|
||||
# print("There are "+str(len(names))+" particles.")
|
||||
|
||||
# for path in cdm_paths:
|
||||
# file = h5py.File(str(path)+"\snapshot_000.hdf5", "r")
|
||||
# names = file["PartType1"]["ParticleIDs"][:]
|
||||
# print("There are "+str(len(names))+" particles.")
|
||||
|
||||
# for path in pbh_paths:
|
||||
# filename = str(path)+"\energy.txt"
|
||||
# file = np.loadtxt(filename)
|
||||
# print("File: "+filename+" Total mass: "+str(file[0][22])+"\n")
|
||||
|
||||
# for path in cdm_paths:
|
||||
# filename = str(path)+"\energy.txt"
|
||||
# file = np.loadtxt(filename)
|
||||
# print("File: "+filename+" Total mass: "+str(file[0][23])+"\n")
|
||||
|
||||
#For Standard DM-L50-N128, there are 2097152 particles, i.e for Nres=128. For Nres=64, there are 262144 particles.
|
||||
#For our cosmos-sims, the total amount of mass is always the same: 232209.09 (units unclear!)
|
||||
|
||||
"""
|
||||
Use this section to extract the desired data from every snapshot. Start with
|
||||
a random selection of particles to enable faster testing with ParaView. Raw
|
||||
String needed to read spaces; filename.with_suffix(".csv").name works thanks to
|
||||
Lukas.
|
||||
"""
|
||||
|
||||
|
||||
#indices = np.random.choice(np.arange(2097152), 100000, replace=False) #for Nres=128
|
||||
#indices = np.random.choice(np.arange(262144), 100000, replace=False) #for Nres=64
|
||||
|
||||
# directory = Path(r"C:\Users\Ben Melville\Documents\Studium\MSc Thesis\cosmo_sims\64_cdm")
|
||||
directory = Path(".")
|
||||
total_mass = 232209.09 #retrieved from above
|
||||
Nres = 64 #choose one of this or the following:
|
||||
#Nres = 128
|
||||
mass_per_particle = total_mass / (Nres**3)
|
||||
|
||||
for filename in sorted(directory.glob("snapshot_*.hdf5")):
|
||||
print(filename)
|
||||
file = h5py.File(str(filename), "r")
|
||||
|
||||
coordinates = file["PartType1"]["Coordinates"][:] #for cdm particles
|
||||
names = file["PartType1"]["ParticleIDs"][:]
|
||||
velocities = file["PartType1"]["Velocities"][:]
|
||||
|
||||
print("building 3d-Tree")
|
||||
tree = scipy.spatial.KDTree(coordinates)
|
||||
print(getsizeof(tree)/1024,"KB")
|
||||
print("tree built")
|
||||
|
||||
# coordinates = file["PartType0"]["Coordinates"][:] #for pbh particles
|
||||
# names = file["PartType0"]["ParticleIDs"][:]
|
||||
# velocities = file["PartType0"]["Velocities"][:]
|
||||
|
||||
absolute_velo = np.sqrt(np.sum(velocities**2, axis=1))
|
||||
print(len(names))
|
||||
|
||||
print("searching neighbours")
|
||||
a = time.perf_counter_ns()
|
||||
closest_neighbours, indices = tree.query([coordinates], k=40, workers=6)
|
||||
# shape of closest_neighbours: (1, 262144, 40)
|
||||
b = time.perf_counter_ns()
|
||||
print("found neighbours")
|
||||
print(f"took {(b - a) / 1000 / 1000:.2f} ms")
|
||||
closest_neighbours = closest_neighbours[0] # to (262144, 40)
|
||||
densities = 40 * mass_per_particle / np.mean(closest_neighbours, axis=1) ** 3
|
||||
|
||||
print(closest_neighbours.shape)
|
||||
print(densities)
|
||||
print(densities.shape)
|
||||
all_data = np.append(coordinates, velocities, axis=1)
|
||||
all_data = np.column_stack((all_data, absolute_velo, names, densities))
|
||||
sorted_index = np.argsort(all_data[::,7], kind="stable")
|
||||
all_data = all_data[sorted_index, :]
|
||||
|
||||
# np.savetxt("out_"+filename.with_suffix(".csv").name, all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name") #if indices are needed
|
||||
np.savetxt(directory/f"out_{filename.stem}.csv", all_data, delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name,density")
|
||||
print(all_data.shape)
|
||||
|
||||
|
||||
"""
|
||||
This section is the old version of reading in just one file. It shows some
|
||||
underlying structure and gives the option of using all data.
|
||||
"""
|
||||
|
||||
|
||||
# file = h5py.File("snapshot_000.hdf5", "r")
|
||||
|
||||
# configuration = file["Config"]
|
||||
# header = file["Header"]
|
||||
# parameters = file["Parameters"]
|
||||
# data_b = file["PartType0"] #according to Oliver's program, Type_0 are the baryons and Type_1 the cdms
|
||||
# coordinates_b = data_b["Coordinates"][:]
|
||||
# names_b = data_b["ParticleIDs"][:]
|
||||
# velocities_b = data_b["Velocities"][:]
|
||||
|
||||
# data_c = file["PartType1"] #all keys used here: ['Coordinates', 'ParticleIDs', 'Velocities']
|
||||
# coordinates_c = data_c["Coordinates"][:]
|
||||
# names_c = data_c["ParticleIDs"][:]
|
||||
# velocities_c = data_c["Velocities"][:]
|
||||
|
||||
|
||||
|
||||
#print(configuration)
|
||||
#print("------------")
|
||||
#print(header)
|
||||
#print("------------")
|
||||
#print(parameters)
|
||||
#print("------------")
|
||||
#print(data_b) #keys contained in data_b: ['Coordinates', 'Density', 'InternalEnergy', 'ParticleIDs', 'SmoothingLength', 'Velocities']
|
||||
|
||||
|
||||
|
||||
"""
|
||||
absolute_velo = np.sqrt(np.sum(velocities**2, axis=1))
|
||||
|
||||
all_data = np.append(coordinates, velocities, axis=1)
|
||||
all_data = np.column_stack((all_data, absolute_velo, names))
|
||||
sorted_index = np.argsort(all_data[::, 7], kind="stable")
|
||||
all_data = all_data[sorted_index, :]
|
||||
|
||||
np.savetxt("out.csv", all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name")
|
||||
#np.savetxt("out_all.csv", all_data, delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name")
|
||||
print(all_data.shape)
|
||||
"""
|
||||
|
||||
"""
|
||||
For the plane wave test, we don't need 3-D plots, we just want to plot z-coordinates as x vs z-velocities as y.
|
||||
Output times: [0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]
|
||||
"""
|
||||
|
||||
"""
|
||||
file = h5py.File("snapshot_000.hdf5", "r")
|
||||
|
||||
data_b = file["PartType0"] #according to Oliver's program, Type_0 are the baryons and Type_1 the cdms
|
||||
z_b = data_b["Coordinates"][:,2]
|
||||
names_b = data_b["ParticleIDs"][:]
|
||||
vz_b = data_b["Velocities"][:,2]
|
||||
|
||||
data_c = file["PartType1"]
|
||||
z_c = data_c["Coordinates"][:,2]
|
||||
names_c = data_c["ParticleIDs"][:]
|
||||
vz_c = data_c["Velocities"][:,2]
|
||||
|
||||
plt.figure()
|
||||
plt.plot( z_b, vz_b, '.', label='type b' )
|
||||
plt.plot( z_c, vz_c, '.', label='type c' )
|
||||
plt.legend()
|
||||
plt.show()
|
||||
"""
|
213
visualisation_swift.py
Normal file
213
visualisation_swift.py
Normal file
|
@ -0,0 +1,213 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# import vtk
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from sys import getsizeof
|
||||
|
||||
import h5py
|
||||
import numba
|
||||
import numpy as np
|
||||
import scipy.spatial
|
||||
|
||||
|
||||
@numba.njit()
|
||||
def determine_desired_range(offset, minimum, upper_limit_bottom, lower_limit_top, maximum):
|
||||
a = minimum
|
||||
b = maximum
|
||||
|
||||
if offset < 0:
|
||||
a = lower_limit_top
|
||||
elif offset > 0:
|
||||
b = upper_limit_bottom
|
||||
|
||||
return a, b
|
||||
|
||||
|
||||
@numba.njit()
|
||||
def find_coordinates_to_move(minimum, maximum, ratio, x_offset, y_offset, z_offset, move_candidates):
|
||||
coordinates_to_move = []
|
||||
x_start, x_end = determine_desired_range(x_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
y_start, y_end = determine_desired_range(y_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
z_start, z_end = determine_desired_range(z_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
||||
|
||||
for particle in move_candidates:
|
||||
point = particle[0:3]
|
||||
if x_start <= point[0] <= x_end and y_start <= point[1] <= y_end and z_start <= point[2] <= z_end:
|
||||
coordinates_to_move.append(particle)
|
||||
|
||||
return coordinates_to_move
|
||||
|
||||
|
||||
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/")
|
||||
|
||||
# file = h5py.File(directory / "auriga6_halo7_8_9.hdf5", "r")
|
||||
|
||||
for filename in sorted(directory.glob("output_*.hdf5")):
|
||||
print(filename)
|
||||
file = h5py.File(str(filename), "r")
|
||||
Header = file['Header']
|
||||
|
||||
highres_coordinates = file["PartType1"]["Coordinates"][:] # for cdm particles
|
||||
highres_names = file["PartType1"]["ParticleIDs"][:]
|
||||
highres_velocities = file["PartType1"]["Velocities"][:]
|
||||
highres_masses = file['PartType1']['Masses'][:]
|
||||
highres_absolute_velo = np.sqrt(np.sum(highres_velocities ** 2, axis=1))
|
||||
|
||||
lowres_coordinates = file["PartType2"]["Coordinates"][:] # for cdm particles
|
||||
lowres_names = file["PartType2"]["ParticleIDs"][:]
|
||||
lowres_velocities = file["PartType2"]["Velocities"][:]
|
||||
lowres_masses = file['PartType2']['Masses'][:]
|
||||
lowres_absolute_velo = np.sqrt(np.sum(lowres_velocities ** 2, axis=1))
|
||||
|
||||
original_coordinates = np.concatenate((highres_coordinates, lowres_coordinates))
|
||||
# if "auriga" in str(filename):
|
||||
# original_coordinates /= 1000
|
||||
print(original_coordinates.mean())
|
||||
print(original_coordinates.min())
|
||||
print(original_coordinates.max())
|
||||
# print(file['Header'])
|
||||
# print(list(file['Units'].attrs.items()))
|
||||
# exit()
|
||||
names = np.concatenate((highres_names, lowres_names))
|
||||
velocities = np.concatenate((highres_velocities, lowres_velocities))
|
||||
masses = np.concatenate((highres_masses, lowres_masses))
|
||||
absolute_velo = np.concatenate((highres_absolute_velo, lowres_absolute_velo))
|
||||
# for bla in [original_coordinates, names, velocities, masses, absolute_velo]:
|
||||
# print(bla.shape)
|
||||
original_data = np.vstack([
|
||||
original_coordinates[::, 0],
|
||||
original_coordinates[::, 1],
|
||||
original_coordinates[::, 2],
|
||||
names,
|
||||
velocities[::, 0],
|
||||
velocities[::, 1],
|
||||
velocities[::, 2],
|
||||
masses,
|
||||
absolute_velo,
|
||||
]).T
|
||||
print(original_data.shape)
|
||||
assert (original_coordinates == original_data[::, 0:3]).all()
|
||||
|
||||
boundaries = Header.attrs['BoxSize'] # BoxLength for e5 boxes depends on Nres, 2.36438 for 256, 4.72876 for 512.
|
||||
print(boundaries)
|
||||
if not boundaries.shape:
|
||||
boundaries = np.array([boundaries] * 3)
|
||||
offsets = [-1, 0, 1]
|
||||
transformed_data = original_data[:]
|
||||
number_of_time_that_points_have_been_found = 0
|
||||
|
||||
# assumes cube form and 0.1 as desired ratio to move
|
||||
minimum = 0.0
|
||||
maximum = max(boundaries)
|
||||
ratio = 0.1
|
||||
box_length = maximum - minimum
|
||||
range_to_move = 0.1 * box_length
|
||||
upper_limit_bottom = minimum + range_to_move
|
||||
lower_limit_top = maximum - range_to_move
|
||||
|
||||
print("Find candidates to move...")
|
||||
|
||||
|
||||
@numba.njit()
|
||||
def find_move_candidates():
|
||||
move_candidates = []
|
||||
print("finding move candidates")
|
||||
for particle in original_data:
|
||||
point = particle[0:3]
|
||||
if (
|
||||
minimum <= point[0] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[0] <= maximum or
|
||||
minimum <= point[1] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[1] <= maximum or
|
||||
minimum <= point[2] <= upper_limit_bottom or
|
||||
lower_limit_top <= point[2] <= maximum
|
||||
):
|
||||
move_candidates.append(particle)
|
||||
# print(point)
|
||||
return move_candidates
|
||||
|
||||
|
||||
move_candidates = find_move_candidates()
|
||||
move_candidates = np.array(move_candidates)
|
||||
|
||||
print("...done.")
|
||||
for x in offsets:
|
||||
for y in offsets:
|
||||
for z in offsets:
|
||||
if (x, y, z) == (0, 0, 0):
|
||||
continue
|
||||
moved_coordinates = find_coordinates_to_move(minimum, maximum, ratio, x, y, z, move_candidates)
|
||||
# print(moved_coordinates)
|
||||
moved_coordinates = np.array(moved_coordinates)
|
||||
# if not moved_coordinates:
|
||||
# print(f"nothing moved in {(x,y,z)}")
|
||||
# continue
|
||||
moved_coordinates[::, 0] += x * boundaries[0]
|
||||
moved_coordinates[::, 1] += y * boundaries[1]
|
||||
moved_coordinates[::, 2] += z * boundaries[2]
|
||||
transformed_data = np.vstack((transformed_data, moved_coordinates))
|
||||
number_of_time_that_points_have_been_found += 1
|
||||
print(f"Points found: {number_of_time_that_points_have_been_found}/26...")
|
||||
|
||||
# assert coordinates.shape[0] == original_coordinates.shape[0] * 3 ** 3 #check that the new space has the shape we want it to have
|
||||
|
||||
num_nearest_neighbors = 40
|
||||
print("Building 3d-Tree for all particles...")
|
||||
coordinates = transformed_data[::, 0:3]
|
||||
print(coordinates.shape)
|
||||
tree = scipy.spatial.KDTree(coordinates)
|
||||
print(getsizeof(tree) / 1024, "KB")
|
||||
print("...done.")
|
||||
print("Searching neighbours...")
|
||||
a = time.perf_counter_ns()
|
||||
distances, indices = tree.query([coordinates], k=num_nearest_neighbors, workers=6)
|
||||
# shape of closest_neighbours: (1, xxxx, 40)
|
||||
b = time.perf_counter_ns()
|
||||
print("...found neighbours.")
|
||||
print(f"took {(b - a) / 1000 / 1000:.2f} ms")
|
||||
distances = distances[0] # to (xxxx, 40)
|
||||
indices = indices[0] # to (xxxx, 40)
|
||||
print(distances.shape)
|
||||
print(indices.shape)
|
||||
print(indices)
|
||||
mass_array = []
|
||||
print("fetching masses")
|
||||
for subindices in indices: # subindices is (40)
|
||||
# can maybe be optimized to remove loop
|
||||
masses = transformed_data[subindices, 7]
|
||||
mass_array.append(masses)
|
||||
mass_array = np.array(mass_array)
|
||||
print("finished fetching masses")
|
||||
# print(closest_neighbours, indices)
|
||||
# print(indices)
|
||||
|
||||
# densities = num_nearest_neighbors * mass_per_particle / np.mean(closest_neighbours, axis=1) ** 3
|
||||
total_masses = np.sum(mass_array, axis=1)
|
||||
densities = total_masses / np.mean(distances, axis=1) ** 3
|
||||
alt_densities = total_masses / np.max(distances, axis=1) ** 3
|
||||
|
||||
# print(closest_neighbours.shape)
|
||||
|
||||
print(densities)
|
||||
print(densities.shape)
|
||||
all_data = np.column_stack([list(range(densities.shape[0])), transformed_data, densities, alt_densities])
|
||||
print(all_data.shape)
|
||||
print(original_data.shape[0])
|
||||
export_data = all_data[:original_data.shape[0]]
|
||||
print(export_data.shape)
|
||||
|
||||
# all_data = np.append(coordinates, velocities, axis=1)
|
||||
# all_data = np.column_stack((all_data, absolute_velo, names, densities))
|
||||
# sorted_index = np.argsort(all_data[::, 7], kind="stable")
|
||||
# all_data = all_data[sorted_index, :]
|
||||
|
||||
# np.savetxt("out_"+filename.with_suffix(".csv").name, all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name") #if indices are needed
|
||||
np.savetxt(directory / f"out_{filename.with_suffix('.csv').name}",
|
||||
export_data,
|
||||
delimiter=",",
|
||||
fmt="%.3f",
|
||||
header="num,x,y,z,name,vx,vy,vz,masse,v,density,density_alt")
|
||||
file.close()
|
58
write_job_script.py
Normal file
58
write_job_script.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:14:20 2022
|
||||
|
||||
@author: ben
|
||||
|
||||
Currently for 256 particles
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from sys import argv
|
||||
from directories import g4_basedir, g4_output_basedir, python_base
|
||||
|
||||
n_tasks = 48 # used 8 for 128, use 48 for 256.
|
||||
|
||||
def write_job_script(Nres: int, Lbox: float, waveform: str, output_dir: Path):
|
||||
output_dir_string = str(output_dir)
|
||||
|
||||
# replaced line #SBATCH --mem={2 * n_tasks}G with --exclusive for now to get all the memory
|
||||
# deleted --ntasks-per-node={n_tasks} and --ntasks-per-core=1
|
||||
script = f"""#!/bin/bash
|
||||
#SBATCH --mail-type=ALL
|
||||
#SBATCH --mail-user=a01611430@unet.univie.ac.at
|
||||
#SBATCH --time=24:00:00
|
||||
#SBATCH --nodes=1 #equal to -N 1
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --job-name MON_{Nres}
|
||||
#SBATCH -o mon_{waveform}_{Nres}.out
|
||||
|
||||
module load gcc/9.1.0-gcc-4.8.5-mj7s6dg
|
||||
module load openmpi/3.1.4-gcc-9.1.0-fdssbx5
|
||||
module load hdf5/1.10.5-gcc-9.1.0-rolgskh
|
||||
module load fftw/3.3.8-gcc-9.1.0-2kyouz7
|
||||
module load gsl/2.5-gcc-9.1.0-ucmpak4
|
||||
module load cmake/3.17.3-gcc-9.1.0-tsjr5x6
|
||||
module load python/3.9.4-gcc-9.1.0-l7amfu6
|
||||
|
||||
cd $DATA/monofonic_exp_{waveform}/build
|
||||
mpiexec -np {n_tasks} ./monofonIC ../{waveform}_{Nres}_{Lbox:.0f}.conf
|
||||
|
||||
python3 {python_base}/rename_and_move_ics.py {n_tasks} $DATA/monofonic_exp_{waveform}/build {output_dir_string} {waveform} {Nres} {Lbox}
|
||||
|
||||
mpiexec -np {n_tasks} {g4_basedir}/Gadget4 {output_dir}/{waveform}_{Nres}_{Lbox:.0f}_param.txt
|
||||
"""
|
||||
|
||||
with (output_dir / "job.sh").open("w") as f:
|
||||
f.write(script)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
write_job_script(
|
||||
Nres = int(argv[1]),
|
||||
Lbox = float(argv[2]),
|
||||
output_dir = g4_output_basedir / f"{argv[3]}_{argv[1]}_{argv[2]}"
|
||||
)
|
||||
|
||||
|
58
write_job_script_g4.py
Normal file
58
write_job_script_g4.py
Normal file
|
@ -0,0 +1,58 @@
|
|||
#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sat Jan 22 16:14:20 2022
|
||||
|
||||
@author: ben
|
||||
|
||||
Currently for 256 particles
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
from sys import argv
|
||||
from directories import g4_basedir, g4_output_basedir, python_base
|
||||
|
||||
n_tasks = 48 # used 8 for 128, use 48 for 256.
|
||||
|
||||
def write_job_script(Nres: int, Lbox: float, waveform: str, output_dir: Path):
|
||||
output_dir_string = str(output_dir)
|
||||
|
||||
# replaced line #SBATCH --mem={2 * n_tasks}G with --exclusive for now to get all the memory
|
||||
# deleted --ntasks-per-node={n_tasks} and --ntasks-per-core=1
|
||||
script = f"""#!/bin/bash
|
||||
#SBATCH --mail-type=ALL
|
||||
#SBATCH --mail-user=a01611430@unet.univie.ac.at
|
||||
#SBATCH --time=24:00:00
|
||||
#SBATCH --nodes=1 #equal to -N 1
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --job-name MON_{Nres}
|
||||
#SBATCH -o mon_{waveform}_{Nres}.out
|
||||
|
||||
module load gcc/9.1.0-gcc-4.8.5-mj7s6dg
|
||||
module load openmpi/3.1.4-gcc-9.1.0-fdssbx5
|
||||
module load hdf5/1.10.5-gcc-9.1.0-rolgskh
|
||||
module load fftw/3.3.8-gcc-9.1.0-2kyouz7
|
||||
module load gsl/2.5-gcc-9.1.0-ucmpak4
|
||||
module load cmake/3.17.3-gcc-9.1.0-tsjr5x6
|
||||
module load python/3.9.4-gcc-9.1.0-l7amfu6
|
||||
|
||||
cd $DATA/monofonic_exp_{waveform}/build
|
||||
mpiexec -np {n_tasks} ./monofonIC ../g4_{waveform}_{Nres}_{Lbox:.0f}.conf
|
||||
|
||||
python3 {python_base}/rename_and_move_ics.py {n_tasks} $DATA/monofonic_exp_{waveform}/build {output_dir_string} {waveform} {Nres} {Lbox}
|
||||
|
||||
mpiexec -np {n_tasks} {g4_basedir}/Gadget4 {output_dir}/{waveform}_{Nres}_{Lbox:.0f}_param.txt
|
||||
"""
|
||||
|
||||
with (output_dir / "job.sh").open("w") as f:
|
||||
f.write(script)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
write_job_script(
|
||||