1
0
Fork 0
mirror of https://github.com/glatterf42/sims_python_files.git synced 2024-09-09 04:33:45 +02:00
sims_python_files/density_profiles_preparation.py
2022-04-13 13:20:32 +02:00

187 lines
7.9 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 20 15:03:28 2021
@author: Ben Melville
"""
import h5py
from pathlib import Path
#import matplotlib.pyplot as plt
from scipy.spatial import KDTree #for nearest neighbour search
import numpy as np
import numba
def determine_desired_range(offset, minimum, upper_limit_bottom, lower_limit_top, maximum):
a = minimum
b = maximum
if offset < 0:
a = lower_limit_top
elif offset > 0:
b = upper_limit_bottom
return a,b
@numba.njit()
def find_coordinates_to_move(minimum, maximum, ratio, x_offset, y_offset, z_offset, move_candidates):
coordinates_to_move = []
x_start, x_end = determine_desired_range(x_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
y_start, y_end = determine_desired_range(y_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
z_start, z_end = determine_desired_range(z_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
for point in move_candidates:
if x_start <= point[0] <= x_end and y_start <= point[1] <= y_end and z_start <= point[2] <= z_end:
coordinates_to_move.append(point)
return coordinates_to_move
directory = Path(r".\256_pbh_fast_10sigma")
# total_mass = 232209.09 #retrieved from visualisation.py
# #Choose one of the following Nres values:
# Nres = 64
# #Nres = 128
# mass_per_particle = total_mass / (Nres**3)
# file = h5py.File(directory / "fof_subhalo_tab_038.hdf5", "r") #for whole duration
# file = h5py.File(directory / "fof_subhalo_tab_018.hdf5", "r") #for small boxes
file = h5py.File(directory / "fof_subhalo_tab_016.hdf5", "r") #for e5 boxes 256
# for key in file.keys():
# print(key)
configuration = file["Config"] #appears to be empty
header = file["Header"] #appears to be empty
ids = file["IDs"] #appears to be empty
parameters = file["Parameters"] #appears to be empty
group = file["Group"] #contains ['GroupAscale', 'GroupFirstSub', 'GroupLen', 'GroupLenType', 'GroupMass', 'GroupMassType', 'GroupNsubs', 'GroupOffsetType', 'GroupPos', 'GroupVel', 'Group_M_Crit200', 'Group_M_Crit500', 'Group_M_Mean200', 'Group_M_TopHat200', 'Group_R_Crit200', 'Group_R_Crit500', 'Group_R_Mean200', 'Group_R_TopHat200']
subhalo = file["Subhalo"] #contains ['SubhaloCM', 'SubhaloGroupNr', 'SubhaloHalfmassRad', 'SubhaloHalfmassRadType', 'SubhaloIDMostbound', 'SubhaloLen', 'SubhaloLenType', 'SubhaloMass', 'SubhaloMassType', 'SubhaloOffsetType', 'SubhaloParentRank', 'SubhaloPos', 'SubhaloRankInGr', 'SubhaloSpin', 'SubhaloVel', 'SubhaloVelDisp', 'SubhaloVmax', 'SubhaloVmaxRad']
# file = h5py.File(str(directory)+r"\subhalo_snapshot_038.hdf5", "r")
# configuration = file["Config"] #appears to be empty
# header = file["Header"] #appears to be empty
# parameters = file["Parameters"] #appears to be empty
# parttype1 = file["PartType1"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
group_positions = group["GroupPos"][:]
group_radii = group["Group_R_Crit200"][:]
group_masses = group["Group_M_Crit200"][:]
# file = h5py.File(directory / "subhalo_snapshot_038.hdf5", "r") #for whole duration
# file = h5py.File(directory / "snapshot_018.hdf5", "r") #for small boxes
file = h5py.File(directory / "snapshot_016.hdf5", "r") #for e5 boxes 256
# parttype1 = file["PartType1"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
# original_coordinates = file["PartType1"]["Coordinates"][:] #for cdm particles
parttype1 = file["PartType0"] #contains ['Coordinates', 'ParticleIDs', 'SubfindDensity', 'SubfindHsml', 'SubfindVelDisp', 'Velocities']
original_coordinates = file["PartType0"]["Coordinates"][:] #for pbh particles
# boundaries = [30., 30., 30.] #BoxLength in MonofonIC is 30.
# boundaries = [2.77048, 2.77048, 2.77048] #BoxLength for small boxes depends on Nres, 2.77048 for 64, 5.54096 for 128.
boundaries = [2.36438, 2.36438, 2.36438] #BoxLength for e5 boxes depends on Nres, 2.36438 for 256, 4.72876 for 512.
offsets = [-1, 0, 1]
coordinates = original_coordinates[:]
number_of_time_that_points_have_been_found = 0
#assumes cube form and 0.1 as desired ratio to move
minimum = 0.0
maximum = max(boundaries)
ratio = 0.1
box_length = maximum - minimum
range_to_move = 0.1 * box_length
upper_limit_bottom = minimum + range_to_move
lower_limit_top = maximum - range_to_move
print("Find candidates to move...")
@numba.njit()
def find_move_candidates():
move_candidates = []
for point in original_coordinates:
if{
minimum <= point[0] <= upper_limit_bottom or
lower_limit_top <= point[0] <= maximum or
minimum <= point[1] <= upper_limit_bottom or
lower_limit_top <= point[1] <= maximum or
minimum <= point[2] <= upper_limit_bottom or
lower_limit_top <= point[2] <= maximum
}:
move_candidates.append(point)
return move_candidates
move_candidates = find_move_candidates()
print("...done.")
for x in offsets:
for y in offsets:
for z in offsets:
if (x, y, z) == (0, 0, 0):
continue
moved_coordinates = find_coordinates_to_move(minimum, maximum, ratio, x, y, z, move_candidates)
moved_coordinates += np.array([x * boundaries[0], y * boundaries[1], z * boundaries[2]])
coordinates = np.vstack((coordinates, moved_coordinates))
number_of_time_that_points_have_been_found += 1
print("Points found: " + str(number_of_time_that_points_have_been_found) + "/26...")
# assert coordinates.shape[0] == original_coordinates.shape[0] * 3 ** 3 #check that the new space has the shape we want it to have
print("Building 3d-Tree for all particles...")
tree = KDTree(coordinates)
print("...done.")
print("Searching group members...")
group_member_indices = tree.query_ball_point(group_positions, group_radii, workers=6)
assert len(group_member_indices) == len(group_positions)
print("...found.")
print("Calculating radial bins and saving data...")
for i in range(len(group_positions)):
group_center = group_positions[i]
group_radius = group_radii[i]
group_mass = group_masses[i]
if group_radius == 0 or group_mass == 0:
continue #Not quite sure how this can happen, but apparently there are groups with a radius or mass of zero (and they are not necessarily the same).
radial_bins = np.arange(0, group_radius + group_radius/10, group_radius/10)
members = [coordinates[j] for j in group_member_indices[i]]
members_in_bins = [] #should better be called distances now
for member in members:
distance = np.linalg.norm(group_center - member)
members_in_bins.append(distance)
#The following already sorts into bins, but that's not ideal for changing bins to e.g. logarithmic values.
# for r in range(len(radial_bins)-1): #-1 because no value is going to be above radial_bins[10] anyway
# if radial_bins[r] <= distance < radial_bins[r + 1]:
# members_in_bins.append(radial_bins[r] + group_radius/20)
assert len(members) == len(members_in_bins)
group_ID = [i+1] * len(members)
group_radius_list = [group_radius] * len(members)
group_mass_list = [group_mass] * len(members)
all_data = np.column_stack((group_ID, group_radius_list, group_mass_list, members_in_bins))
np.savetxt(directory/"density_profiles_16"/f"group{i+1}.csv", all_data, delimiter=",", fmt="%.3f", header="ID,R200,M200,Bin")
print("...done.")