1
0
Fork 0
mirror of https://github.com/glatterf42/sims_python_files.git synced 2024-09-10 05:43:46 +02:00

Visualisation of swift update and mass profile for zoom sims added.

This commit is contained in:
glatterf42 2022-04-25 15:09:20 +02:00
parent 764c1358d1
commit c92465a95a
3 changed files with 137 additions and 25 deletions

View file

@ -8,19 +8,21 @@ Created on Tue Mar 8 11:16:06 2022
import h5py
from pathlib import Path
import numpy as np
# directory = Path(r"/home/ben/sims/swiftsim/examples/agora/")
directory = Path(r"/home/ben/sims/swiftsim/examples/agora/")
# directory = Path(r"/home/ben/Pictures/Gadget4/vsc4_256/")
directory = Path(r'/home/ben/sims/music-panphasia/test/')
# directory = Path(r'/home/ben/sims/music-panphasia/test/')
file = h5py.File(directory / "agora_128.hdf5", "r")
# file = h5py.File(directory / "output_0001.hdf5", "r")
# ics = h5py.File(directory / "agora_128.hdf5", "r")
file = h5py.File(directory / "output_0001.hdf5", "r")
# file_2 = h5py.File(directory / 'output_0001.hdf5', 'r')
# file = h5py.File(directory / "cosmo_ics_gadget_256_pbh_vsc.hdf5", "r")
for key in file.keys():
print(key) #for finding all header entries, which are:
# for key in file.keys():
# print(key) #for finding all header entries, which are:
Header = file["Header"]
@ -29,14 +31,64 @@ PartType1 = file["PartType1"]
Units = file["Units"]
# PartType2 = file['PartType2']
print(list(Header.attrs.items()))
# print(list(Header.attrs.items()))
# print(list(ics['Header'].attrs.items()))
print(Header.attrs['Scale-factor'])
print(PartType1.keys())
# print(PartType2.keys())
print(PartType1['Masses'][0:10])
# print(PartType1.keys())
# # print(PartType2.keys())
# print(PartType1['Masses'][0:10])
print(PartType1['Velocities'][0:10])
# print(PartType1['Velocities'][0:10])
# ic_ids = ics['PartType1']['ParticleIDs'][:]
# ic_velocities = ics['PartType1']['Velocities'][:]
# ic_absolute_vel = np.sqrt(np.sum(ic_velocities ** 2, axis=1))
# ic_data = np.vstack([ic_ids, ic_absolute_vel]).T
# ic_positions = ics['PartType1']['Coordinates'][:]
# ic_distances = np.sqrt(np.sum(ic_positions ** 2, axis=1))
# ic_data = np.vstack([ic_ids, ic_distances]).T
# snap_ids = PartType1['ParticleIDs'][:]
# snap_velocities = PartType1['Velocities'][:]
# snap_absolute_vel = np.sqrt(np.sum(snap_velocities ** 2, axis=1))
# snap_data = np.vstack([snap_ids, snap_absolute_vel]).T
# snap_data_sorted = snap_data[snap_data[:, 0].argsort()]
# snap_positions = PartType1['Coordinates'][:]
# snap_distances = np.sqrt(np.sum(snap_positions ** 2, axis=1))
# snap_data = np.vstack([snap_ids, snap_distances]).T
# snap_data_sorted = snap_data[snap_data[:, 0].argsort()]
# snap_2_ids = file_2['PartType1']['ParticleIDs'][:]
# snap_2_velocities = file_2['PartType1']['Velocities'][:]
# snap_2_absolute_vel = np.sqrt(np.sum(snap_2_velocities ** 2, axis=1))
# snap_2_data = np.vstack([snap_2_ids, snap_2_absolute_vel]).T
# snap_2_data_sorted = snap_2_data[snap_2_data[:, 0].argsort()]
# snap_2_positions = file_2['PartType1']['Coordinates'][:]
# snap_2_distances = np.sqrt(np.sum(snap_2_positions ** 2, axis=1))
# snap_2_data = np.vstack([snap_2_ids, snap_2_distances]).T
# snap_2_data_sorted = snap_2_data[snap_2_data[:, 0].argsort()]
# velocity_difference = np.abs(ic_data[:, 1] - snap_data_sorted[:, 1])
# mean_velocity_difference = np.mean(velocity_difference)
# velocity_difference_2 = np.abs(snap_data_sorted[:, 1] - snap_2_data_sorted[:, 1])
# mean_2_velocity_difference = np.mean(velocity_difference_2)
# print(mean_velocity_difference, mean_2_velocity_difference)
# print(np.min(velocity_difference), np.max(velocity_difference))
# print(np.min(velocity_difference_2), np.max(velocity_difference_2))
# distance_difference = np.abs(ic_data[:, 1] - snap_data_sorted[:, 1])
# mean_distance_difference = np.mean(distance_difference)
# distance_difference_2 = np.abs(snap_data_sorted[:, 1] - snap_2_data_sorted[:, 1])
# mean_2_distance_difference = np.mean(distance_difference_2)
# print(mean_distance_difference, mean_2_distance_difference)
# print(np.min(ic_distances), np.max(ic_distances))
# print(np.min(snap_distances), np.max(snap_distances))

View file

@ -9,6 +9,10 @@ Created on Tue Mar 8 11:16:06 2022
import h5py
from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
def V(r):
return 4 * np.pi * r**3 / 3
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/")
@ -19,6 +23,8 @@ file = h5py.File(directory / f'output_000{snap_number}.hdf5', 'r')
PartType1 = file["PartType1"]
highres_groupids = PartType1['FOFGroupIDs'][:]
highres_coordinates = PartType1['Coordinates'][:]
highres_masses = PartType1['Masses'][:]
total_highres_particles = len(highres_groupids)
unique_groups, particle_count = np.unique(highres_groupids, return_counts=True)
@ -35,8 +41,7 @@ groups = fof_file['Groups']
# for key in groups.keys():
# print(key)
# centres = groups['Centres'][:]
centres = groups['Centres'][:]
groupids = groups['GroupIDs'][:]
masses = groups['Masses'][:]
number_of_members = groups['Sizes'][:]
@ -48,10 +53,61 @@ for i in range(len(groupids)-1):
if np.isin(groupids[i], unique_groups):
highres_members = particle_count[separate_unique_counter]
contamination = (1 - highres_members / number_of_members[i])
print(f'Group: {groupids[i]:{table_width}} | Mass: {masses[i]:{table_width + 1}.{table_width}} | Highres Members: {highres_members:{table_width}} | Total Members: {number_of_members[i]:{table_width}} | Contamination: {contamination * 100:.{table_width}}%\n')
print(f'Group: {groupids[i]:{table_width}} | Mass: {masses[i]:{table_width + 1}.{table_width}} | Highres Members: {highres_members:{table_width + 1}} | Total Members: {number_of_members[i]:{table_width}} | Contamination: {contamination * 100:.{table_width}}%\n')
separate_unique_counter += 1
main_group_origin = centres[0]
main_group_mass = masses[0]
distances = []
# masses = []
for j in range(len(highres_groupids)):
if highres_groupids[j] == np.min(unique_groups):
distance = np.linalg.norm(main_group_origin - highres_coordinates[j])
# mass = highres_masses[j]
distances.append(distance)
# masses.append(mass)
group_radius = np.max(np.array(distances))
normalised_distances = np.array(distances) / group_radius
num_bins = 30
log_radial_bins = np.geomspace(0.01, 2, num_bins)
particle_mass = highres_masses[0] # Careful: this assumes that all highres particles have the same mass and that it's exclusively them in the main group,
# so keep an eye on its contamination and adjust accordingly!
counts_in_radial_bins = []
for k in range(len(log_radial_bins) - 1):
count = 0
for member_distance in normalised_distances:
if log_radial_bins[k] <= member_distance < log_radial_bins[k + 1]:
count += 1
volume = V(log_radial_bins[k + 1] * group_radius) - V(log_radial_bins[k] * group_radius)
count /= volume
counts_in_radial_bins.append(count)
plot_log_radial_bins = log_radial_bins[0:len(log_radial_bins) - 1] # there is one fewer bin then there are bin borders
masses_in_radial_bins = np.array(counts_in_radial_bins) * particle_mass
Nres = 128
Lbox = 100
softening = Lbox / Nres / 30
plt.axvline(4 * softening / group_radius, linestyle='--', color='grey')
plt.title('Density profile Auriga 6')
plt.xlabel(r'R / $\mathrm{R}_\mathrm{group}$')
plt.ylabel(r'ρ [$10^{10}\ \mathrm{M}_\odot\ /\ \mathrm{Mpc}^3$]')
plt.loglog(plot_log_radial_bins, masses_in_radial_bins)
plt.show()
# for i in range(10):
# print(f'Group: {groupids[i]} | Mass: {masses[i]} | Size: {sizes[i]} | Centre: {centres[i]}\n')

View file

@ -41,7 +41,7 @@ def find_coordinates_to_move(minimum, maximum, ratio, x_offset, y_offset, z_offs
return coordinates_to_move
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/")
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/auriga6_halo7_8_10/")
# file = h5py.File(directory / "auriga6_halo7_8_9.hdf5", "r")
@ -54,26 +54,29 @@ for filename in sorted(directory.glob("output_*.hdf5")):
highres_names = file["PartType1"]["ParticleIDs"][:]
highres_velocities = file["PartType1"]["Velocities"][:]
highres_masses = file['PartType1']['Masses'][:]
highres_group_ids = file['PartType1']['FOFGroupIDs'][:]
highres_absolute_velo = np.sqrt(np.sum(highres_velocities ** 2, axis=1))
lowres_coordinates = file["PartType2"]["Coordinates"][:] # for cdm particles
lowres_names = file["PartType2"]["ParticleIDs"][:]
lowres_velocities = file["PartType2"]["Velocities"][:]
lowres_masses = file['PartType2']['Masses'][:]
lowres_group_ids = file['PartType2']['FOFGroupIDs'][:]
lowres_absolute_velo = np.sqrt(np.sum(lowres_velocities ** 2, axis=1))
original_coordinates = np.concatenate((highres_coordinates, lowres_coordinates))
# if "auriga" in str(filename):
# original_coordinates /= 1000
print(original_coordinates.mean())
print(original_coordinates.min())
print(original_coordinates.max())
# print(original_coordinates.mean())
# print(original_coordinates.min())
# print(original_coordinates.max())
# print(file['Header'])
# print(list(file['Units'].attrs.items()))
# exit()
names = np.concatenate((highres_names, lowres_names))
velocities = np.concatenate((highres_velocities, lowres_velocities))
masses = np.concatenate((highres_masses, lowres_masses))
group_ids = np.concatenate((highres_group_ids, lowres_group_ids))
absolute_velo = np.concatenate((highres_absolute_velo, lowres_absolute_velo))
# for bla in [original_coordinates, names, velocities, masses, absolute_velo]:
# print(bla.shape)
@ -86,13 +89,14 @@ for filename in sorted(directory.glob("output_*.hdf5")):
velocities[::, 1],
velocities[::, 2],
masses,
group_ids,
absolute_velo,
]).T
print(original_data.shape)
assert (original_coordinates == original_data[::, 0:3]).all()
boundaries = Header.attrs['BoxSize'] # BoxLength for e5 boxes depends on Nres, 2.36438 for 256, 4.72876 for 512.
print(boundaries)
print(boundaries, len(highres_names))
if not boundaries.shape:
boundaries = np.array([boundaries] * 3)
offsets = [-1, 0, 1]
@ -191,13 +195,13 @@ for filename in sorted(directory.glob("output_*.hdf5")):
# print(closest_neighbours.shape)
print(densities)
print(densities.shape)
# print(densities)
# print(densities.shape)
all_data = np.column_stack([list(range(densities.shape[0])), transformed_data, densities, alt_densities])
print(all_data.shape)
print(original_data.shape[0])
# print(all_data.shape)
# print(original_data.shape[0])
export_data = all_data[:original_data.shape[0]]
print(export_data.shape)
# print(export_data.shape)
# all_data = np.append(coordinates, velocities, axis=1)
# all_data = np.column_stack((all_data, absolute_velo, names, densities))
@ -209,5 +213,5 @@ for filename in sorted(directory.glob("output_*.hdf5")):
export_data,
delimiter=",",
fmt="%.3f",
header="num,x,y,z,name,vx,vy,vz,masse,v,density,density_alt")
header="num,x,y,z,name,vx,vy,vz,masse,groupid,v,density,density_alt")
file.close()