1
0
Fork 0
mirror of https://github.com/cosmo-sims/monofonIC.git synced 2024-09-19 17:03:45 +02:00
monofonIC/include/convolution.hh

548 lines
21 KiB
C++
Raw Normal View History

#pragma once
#include <array>
#include <general.hh>
#include <grid_fft.hh>
//! convolution class, respecting Orszag's 3/2 rule
template< typename data_t >
class OrszagConvolver
{
protected:
Grid_FFT<data_t> *f1p_, *f2p_;
#ifdef USE_MPI
Grid_FFT<data_t> *fMPIbuf_;
#endif
std::array<size_t,3> np_;
std::array<real_t,3> length_;
ccomplex_t *crecvbuf_;
real_t *recvbuf_;
2019-05-13 09:56:58 +02:00
size_t maxslicesz_;
std::vector<ptrdiff_t> offsets_, offsetsp_;
std::vector<size_t> sizes_, sizesp_;
// ptrdiff_t *offsets_;
// ptrdiff_t *offsetsp_;
// ptrdiff_t *sizes_;
// ptrdiff_t *sizesp_;
private:
2019-05-13 09:56:58 +02:00
// int get_task( ptrdiff_t index, const ptrdiff_t *offsets, const ptrdiff_t *sizes, const int ntasks ) const
// {
// int itask = 0;
// while( itask < ntasks-1 && offsets[itask+1] <= index ) ++itask;
// return itask;
// }
// get task based on offsets
int get_task(ptrdiff_t index, const std::vector<ptrdiff_t>& offsets, const std::vector<size_t>& sizes, const int ntasks )
{
int itask = 0;
2019-05-13 09:56:58 +02:00
while (itask < ntasks - 1 && offsets[itask + 1] <= index) ++itask;
return itask;
}
// void pad_insert( const Grid_FFT<data_t> & f, Grid_FFT<data_t> & fp );
// void unpad( const Grid_FFT<data_t> & fp, Grid_FFT< data_t > & f );
public:
OrszagConvolver( const std::array<size_t, 3> &N, const std::array<real_t, 3> &L )
: np_({3*N[0]/2,3*N[1]/2,3*N[2]/2}), length_(L)
{
//... create temporaries
f1p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
f2p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
#if defined(USE_MPI)
2019-05-13 09:56:58 +02:00
fMPIbuf_ = new Grid_FFT<data_t>(N, length_, kspace_id);
maxslicesz_ = f1p_->sizes_[1] * f1p_->sizes_[3] * 2;
2019-05-13 09:56:58 +02:00
crecvbuf_ = new ccomplex_t[maxslicesz_ / 2];
recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
int ntasks(MPI_Get_size());
2019-05-13 09:56:58 +02:00
offsets_.assign(ntasks,0);
offsetsp_.assign(ntasks,0);
sizes_.assign(ntasks,0);
sizesp_.assign(ntasks,0);
// offsets_ = new ptrdiff_t[ntasks];
// offsetsp_ = new ptrdiff_t[ntasks];
// sizes_ = new ptrdiff_t[ntasks];
// sizesp_ = new ptrdiff_t[ntasks];
size_t tsize = N[0], tsizep = f1p_->size(0);
2019-05-13 09:56:58 +02:00
MPI_Allgather(&fMPIbuf_->local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&f1p_->local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
#endif
}
~OrszagConvolver()
{
delete f1p_;
delete f2p_;
#if defined(USE_MPI)
delete fMPIbuf_;
delete[] crecvbuf_;
2019-05-13 09:56:58 +02:00
// delete[] offsets_;
// delete[] offsetsp_;
// delete[] sizes_;
// delete[] sizesp_;
#endif
}
template< typename opp >
void convolve_Hessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return -kk[d2r[0]] * kk[d2r[1]] * inr.kelem(i,j,k);
}, res, op );
}
template< typename opp >
void convolve_SumHessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r1,
const std::array<int,2>& d2r2, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return (-kk[d2r1[0]] * kk[d2r1[1]] -kk[d2r2[0]] * kk[d2r2[1]]) * inr.kelem(i,j,k);
}, res, op );
}
template< typename kfunc1, typename kfunc2, typename opp >
void convolve2( kfunc1 kf1, kfunc2 kf2, Grid_FFT<data_t> & res, opp op )
{
//... prepare data 1
f1p_->FourierTransformForward(false);
this->pad_insert( kf1, *f1p_ );
//... prepare data 1
f2p_->FourierTransformForward(false);
this->pad_insert( kf2, *f2p_ );
//... convolve
f1p_->FourierTransformBackward();
f2p_->FourierTransformBackward();
#pragma omp parallel for
for (size_t i = 0; i < f1p_->ntot_; ++i){
(*f2p_).relem(i) *= (*f1p_).relem(i);
}
f2p_->FourierTransformForward();
//... copy data back
res.FourierTransformForward();
unpad(*f2p_, res, op);
}
//... inplace interface
/*void convolve3( const Grid_FFT<data_t> & f1, const Grid_FFT<data_t> & f2, const Grid_FFT<data_t> & f3, Grid_FFT<data_t> & res )
{
convolve2( f1, f2, res );
convolve2( res, f3, res );
}*/
private:
template <typename kdep_functor>
void pad_insert( kdep_functor kfunc, Grid_FFT<data_t> &fp ){
assert( fp.space_ == kspace_id );
2019-05-13 09:56:58 +02:00
// size_t dn[3] = {
// fp.n_[0]/3,// fp.n_[0] - f.n_[0],
// fp.n_[1]/3,// fp.n_[1] - f.n_[1],
// fp.n_[2]/3// fp.n_[2] - f.n_[2],
// };
const double rfac = std::pow(1.5,1.5);//std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
fp.zero();
2019-05-13 09:56:58 +02:00
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
//size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
size_t nhalf[3] = {fp.n_[0] / 3, fp.n_[1] / 3, fp.n_[2] / 3};
#pragma omp parallel for
for (size_t i = 0; i < 2*fp.size(0)/3; ++i)
{
2019-05-13 09:56:58 +02:00
size_t ip = (i > nhalf[0]) ? i + nhalf[0] : i;
for (size_t j = 0; j < 2*fp.size(1)/3; ++j)
{
2019-05-13 09:56:58 +02:00
size_t jp = (j > nhalf[1]) ? j + nhalf[1] : j;
for (size_t k = 0; k < 2*fp.size(2)/3; ++k)
{
2019-05-13 09:56:58 +02:00
size_t kp = (k > nhalf[2]) ? k + nhalf[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
//fp.kelem(ip, jp, kp) = f.kelem(i, j, k) * rfac;
fp.kelem(ip, jp, kp) = kfunc(i, j, k) * rfac;
}
}
}
#else /// then USE_MPI is defined ////////////////////////////////////////////////////////////
MPI_Barrier(MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::dlog << "[MPI] Started scatter for convolution" << std::endl;
//... collect offsets
2019-05-13 09:56:58 +02:00
assert(fMPIbuf_->space_ == kspace_id);
2019-05-13 09:56:58 +02:00
size_t nf[3] = {fMPIbuf_->size(0), fMPIbuf_->size(1), fMPIbuf_->size(2)};
size_t nfp[3] = {fp.size(0), fp.size(1), fp.size(2)};
2019-05-13 09:56:58 +02:00
size_t fny[3] = {fMPIbuf_->n_[1] / 2, fMPIbuf_->n_[0] / 2, fMPIbuf_->n_[2] / 2};
//... local size must be divisible by 2, otherwise this gets too complicated
2019-05-13 09:56:58 +02:00
assert(fMPIbuf_->n_[1] % 2 == 0);
2019-05-13 09:56:58 +02:00
size_t slicesz = fMPIbuf_->size(1) * fMPIbuf_->size(3); //*2;
// comunicate
2019-05-13 12:34:16 +02:00
// check if this is a real field (then we get the wrong size)
// if (typeid(data_t) == typeid(real_t))
// slicesz *= 2; // then sizeof(real_t) gives only half of a complex
// MPI_Datatype datatype =
// (typeid(data_t) == typeid(float))
// ? MPI_FLOAT
// : (typeid(data_t) == typeid(double))
// ? MPI_DOUBLE
// : (typeid(data_t) == typeid(std::complex<float>))
// ? MPI_COMPLEX
// : (typeid(data_t) == typeid(std::complex<double>))
// ? MPI_DOUBLE_COMPLEX
// : MPI_INT;
MPI_Datatype datatype =
(typeid(data_t) == typeid(float)) ? MPI_COMPLEX :
(typeid(data_t) == typeid(double)) ? MPI_DOUBLE_COMPLEX : MPI_BYTE;
// fill MPI send buffer
2019-05-13 09:56:58 +02:00
fMPIbuf_->FourierTransformForward(false);
#pragma omp parallel for
2019-05-13 09:56:58 +02:00
for (size_t i = 0; i < fMPIbuf_->size(0); ++i)
{
2019-05-13 09:56:58 +02:00
for (size_t j = 0; j < fMPIbuf_->size(1); ++j)
{
2019-05-13 09:56:58 +02:00
for (size_t k = 0; k < fMPIbuf_->size(2); ++k)
{
2019-05-13 09:56:58 +02:00
fMPIbuf_->kelem(i, j, k) = kfunc(i, j, k) * rfac;
}
}
}
2019-05-13 09:56:58 +02:00
MPI_Status status;
std::vector<MPI_Request> req;
MPI_Request temp_req;
// send data from buffer
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
2019-05-13 09:56:58 +02:00
MPI_Isend(&fMPIbuf_->kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)iglobal, MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
2019-05-13 12:34:16 +02:00
// std::cout << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ": Isend #" << iglobal << " to task " << sendto << ", size = " << slicesz << std::endl;
}
if (iglobal > fny[0])
{
int sendto = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
2019-05-13 09:56:58 +02:00
MPI_Isend(&fMPIbuf_->kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
2019-05-13 12:34:16 +02:00
// std::cout << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ": Isend #" << iglobal+fny[0] << " to task " << sendto << ", size = " << slicesz<< std::endl;
}
}
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
if (iglobal < fny[0] || iglobal > 2 * fny[0])
{
int recvfrom = 0;
if (iglobal <= fny[0])
recvfrom = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
else
recvfrom = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
2019-05-13 12:34:16 +02:00
// std::cout << "task " << CONFIG::MPI_task_rank << " : receive #" << iglobal << " from task "
// << recvfrom << ", size = " << slicesz << ", " << crecvbuf_ << ", " << datatype << std::endl;
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
2019-05-13 12:34:16 +02:00
// std::cout << "---> ok! " << (bool)(status.MPI_ERROR==MPI_SUCCESS) << std::endl;
2019-05-13 09:56:58 +02:00
// assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
if (k < fny[2])
2019-05-13 09:56:58 +02:00
fp.kelem(i, jp, k) = crecvbuf_[j * fMPIbuf_->sizes_[3] + k];
else if (k > fny[2])
2019-05-13 09:56:58 +02:00
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * fMPIbuf_->sizes_[3] + k];
}
}
else if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// fp.kelem(i,jp,kp) = crecvbuf_[j*f.sizes_[3]+k];
if (k < fny[2])
2019-05-13 09:56:58 +02:00
fp.kelem(i, jp, k) = crecvbuf_[j * fMPIbuf_->sizes_[3] + k];
else if (k > fny[2])
2019-05-13 09:56:58 +02:00
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * fMPIbuf_->sizes_[3] + k];
}
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to set status as wait does not necessarily modify it
// c.f. http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
// ofs << "task " << CONFIG::MPI_task_rank << " : checking request No" << i << std::endl;
MPI_Wait(&req[i], &status);
// ofs << "---> ok!" << std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
}
// usleep(1000);
MPI_Barrier(MPI_COMM_WORLD);
// std::cerr << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed! <<<<<"
// << std::endl; ofs << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed!
// <<<<<" << std::endl;
csoca::dlog.Print("[MPI] Completed scatter for convolution, took %fs\n",
get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI ///////////////////////////////////////////////////////////////
}
template <typename operator_t>
void unpad(const Grid_FFT<data_t> &fp, Grid_FFT<data_t> &f, operator_t op )
{
// assert(fp.n_[0] == 3 * f.n_[0] / 2);
// assert(fp.n_[1] == 3 * f.n_[1] / 2);
// assert(fp.n_[2] == 3 * f.n_[2] / 2);
// make sure we're in Fourier space...
assert( fp.space_ == kspace_id );
f.FourierTransformForward();
2019-05-13 09:56:58 +02:00
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
size_t dn[3] = {
fp.n_[0] - f.n_[0],
fp.n_[1] - f.n_[1],
fp.n_[2] - f.n_[2],
};
size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
2019-05-13 09:56:58 +02:00
const double rfac = std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
for (size_t i = 0; i < f.size(0); ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < f.size(1); ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < f.size(2); ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
f.kelem(i, j, k) = op(fp.kelem(ip, jp, kp) / rfac, f.kelem(i, j, k));
}
}
}
#else /// then USE_MPI is defined //////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::ilog << "[MPI] Started gather for convolution";
MPI_Barrier(MPI_COMM_WORLD);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[4] = {fp.size(0), fp.size(1), fp.size(2), fp.size(3)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
size_t slicesz = fp.size(1) * fp.size(3);
2019-05-13 12:34:16 +02:00
// if (typeid(data_t) == typeid(real_t))
// slicesz *= 2; // then sizeof(real_t) gives only half of a complex
// MPI_Datatype datatype =
// (typeid(data_t) == typeid(float))
// ? MPI_FLOAT
// : (typeid(data_t) == typeid(double))
// ? MPI_DOUBLE
// : (typeid(data_t) == typeid(std::complex<float>))
// ? MPI_COMPLEX
// : (typeid(data_t) == typeid(std::complex<double>))
// ? MPI_DOUBLE_COMPLEX
// : MPI_INT;
MPI_Datatype datatype =
(typeid(data_t) == typeid(float)) ? MPI_COMPLEX :
(typeid(data_t) == typeid(double)) ? MPI_DOUBLE_COMPLEX : MPI_BYTE;
MPI_Status status;
//... local size must be divisible by 2, otherwise this gets too complicated
// assert( tsize%2 == 0 );
f.zero();
std::vector<MPI_Request> req;
MPI_Request temp_req;
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
//... sending
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
else if (iglobal > 2 * fny[0])
{
int sendto = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
}
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
int recvfrom = 0;
if (iglobal < fny[0])
{
recvfrom = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
}
else if (iglobal > fny[0])
{
recvfrom = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &status);
}
else
continue;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k],f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k], f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to preset status as wait does not necessarily modify it to reflect
// success c.f.
// http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
MPI_Wait(&req[i], &status);
assert(status.MPI_ERROR == MPI_SUCCESS);
}
MPI_Barrier(MPI_COMM_WORLD);
csoca::ilog.Print("[MPI] Completed gather for convolution, took %fs", get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI //////////////////////////////////////////////////////////////
}
};