1
0
Fork 0
mirror of https://github.com/cosmo-sims/monofonIC.git synced 2024-09-19 17:03:45 +02:00

separated out convolution routines into class

This commit is contained in:
Oliver Hahn 2019-05-12 21:12:07 +02:00
parent 9c0d71f931
commit 3e488acef6
5 changed files with 600 additions and 830 deletions

579
include/convolution.hh Normal file
View file

@ -0,0 +1,579 @@
#pragma once
#include <array>
#include <general.hh>
#include <grid_fft.hh>
//! convolution class, respecting Orszag's 3/2 rule
template< typename data_t >
class OrszagConvolver
{
protected:
Grid_FFT<data_t> *f1p_, *f2p_;
#ifdef USE_MPI
Grid_FFT<data_t> *fMPIbuf_;
#endif
std::array<size_t,3> np_;
std::array<real_t,3> length_;
ccomplex_t *crecvbuf_;
real_t *recvbuf_;
ptrdiff_t *offsets_;
ptrdiff_t *offsetsp_;
ptrdiff_t *sizes_;
ptrdiff_t *sizesp_;
private:
int get_task( ptrdiff_t index, const ptrdiff_t *offsets, const ptrdiff_t *sizes, const int ntasks ) const
{
int itask = 0;
while( itask < ntasks-1 && offsets[itask+1] <= index ) ++itask;
return itask;
}
// void pad_insert( const Grid_FFT<data_t> & f, Grid_FFT<data_t> & fp );
// void unpad( const Grid_FFT<data_t> & fp, Grid_FFT< data_t > & f );
public:
OrszagConvolver( const std::array<size_t, 3> &N, const std::array<real_t, 3> &L )
: np_({3*N[0]/2,3*N[1]/2,3*N[2]/2}), length_(L)
{
//... create temporaries
f1p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
f2p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
#if defined(USE_MPI)
fMPIbuf_ = Grid_FFT<data_t>(N, length_, kspace_id);
size_t maxslicesz = f1p_->sizes_[1] * f1p_->sizes_[3] * 2;
crecvbuf_ = new ccomplex_t[maxslicesz / 2];
recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
int ntasks(MPI_Get_size());
offsets_ = new ptrdiff_t[ntasks];
offsetsp_ = new ptrdiff_t[ntasks];
sizes_ = new ptrdiff_t[ntasks];
sizesp_ = new ptrdiff_t[ntasks];
size_t tsize = N[0], tsizep = f1p_->size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&f1p_->local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
#endif
}
~OrszagConvolver()
{
delete f1p_;
delete f2p_;
#if defined(USE_MPI)
delete fMPIbuf_;
delete[] crecvbuf_;
delete[] offsets_;
delete[] offsetsp_;
delete[] sizes_;
delete[] sizesp_;
#endif
}
template< typename opp >
void convolve_Hessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return -kk[d2r[0]] * kk[d2r[1]] * inr.kelem(i,j,k);
}, res, op );
}
template< typename opp >
void convolve_SumHessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r1,
const std::array<int,2>& d2r2, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return (-kk[d2r1[0]] * kk[d2r1[1]] -kk[d2r2[0]] * kk[d2r2[1]]) * inr.kelem(i,j,k);
}, res, op );
}
template< typename kfunc1, typename kfunc2, typename opp >
void convolve2( kfunc1 kf1, kfunc2 kf2, Grid_FFT<data_t> & res, opp op )
{
//... prepare data 1
f1p_->FourierTransformForward(false);
this->pad_insert( kf1, *f1p_ );
//... prepare data 1
f2p_->FourierTransformForward(false);
this->pad_insert( kf2, *f2p_ );
//... convolve
f1p_->FourierTransformBackward();
f2p_->FourierTransformBackward();
#pragma omp parallel for
for (size_t i = 0; i < f1p_->ntot_; ++i){
(*f2p_).relem(i) *= (*f1p_).relem(i);
}
f2p_->FourierTransformForward();
//... copy data back
res.FourierTransformForward();
unpad(*f2p_, res, op);
}
//... inplace interface
/*void convolve3( const Grid_FFT<data_t> & f1, const Grid_FFT<data_t> & f2, const Grid_FFT<data_t> & f3, Grid_FFT<data_t> & res )
{
convolve2( f1, f2, res );
convolve2( res, f3, res );
}*/
private:
template <typename kdep_functor>
void pad_insert( kdep_functor kfunc, Grid_FFT<data_t> &fp ){
assert( fp.space_ == kspace_id );
size_t dn[3] = {
fp.n_[0]/3,// fp.n_[0] - f.n_[0],
fp.n_[1]/3,// fp.n_[1] - f.n_[1],
fp.n_[2]/3// fp.n_[2] - f.n_[2],
};
const double rfac = std::pow(1.5,1.5);//std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
fp.zero();
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
//size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
size_t nhalf[3] = {fp.n_[0] / 3, fp.n_[1] / 3, fp.n_[2] / 3};
#pragma omp parallel for
for (size_t i = 0; i < 2*fp.size(0)/3; ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < 2*fp.size(1)/3; ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < 2*fp.size(2)/3; ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
//fp.kelem(ip, jp, kp) = f.kelem(i, j, k) * rfac;
fp.kelem(ip, jp, kp) = kfunc(i, j, k) * rfac;
}
}
}
#else /// then USE_MPI is defined ////////////////////////////////////////////////////////////
throw std::runtime_error("need to implement buffering before sending for MPI");
MPI_Barrier(MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
size_t maxslicesz = fp.sizes_[1] * fp.sizes_[3] * 2;
std::vector<ccomplex_t> crecvbuf_(maxslicesz / 2, 0);
real_t *recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
std::vector<ptrdiff_t>
offsets_(CONFIG::MPI_task_size, 0),
offsetsp_(CONFIG::MPI_task_size, 0),
sizes_(CONFIG::MPI_task_size, 0),
sizesp_(CONFIG::MPI_task_size, 0);
size_t tsize = f.size(0), tsizep = fp.size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&fp.local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::dlog << "[MPI] Started scatter for convolution" << std::endl;
//... collect offsets
assert(f.space_ == kspace_id);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[3] = {fp.size(0), fp.size(1), fp.size(2)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
//... local size must be divisible by 2, otherwise this gets too complicated
assert(f.n_[1] % 2 == 0);
size_t slicesz = f.size(1) * f.size(3); //*2;
// comunicate
if (typeid(data_t) == typeid(real_t))
slicesz *= 2; // then sizeof(real_t) gives only half of a complex
MPI_Datatype datatype =
(typeid(data_t) == typeid(float))
? MPI_FLOAT
: (typeid(data_t) == typeid(double))
? MPI_DOUBLE
: (typeid(data_t) == typeid(std::complex<float>))
? MPI_COMPLEX
: (typeid(data_t) == typeid(std::complex<double>))
? MPI_DOUBLE_COMPLEX
: MPI_INT;
MPI_Status status;
std::vector<MPI_Request> req;
MPI_Request temp_req;
// fill MPI send buffer
fMPIbuf_.FourierTransformForward(false);
#pragma omp parallel for
for (size_t i = 0; i < 2*fp.size(0)/3; ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < 2*fp.size(1)/3; ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < 2*fp.size(2)/3; ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
//fp.kelem(ip, jp, kp) = f.kelem(i, j, k) * rfac;
fMPIbuf_.kelem(ip, jp, kp) = kfunc(i, j, k) * rfac;
}
}
}
// send data from buffer
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&fMPIbuf_.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)iglobal, MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal << " to task " << sendto << std::endl;
}
if (iglobal > fny[0])
{
int sendto = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&fMPIbuf_.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal+fny[0] << " to task " << sendto << std::endl;
}
}
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
if (iglobal < fny[0] || iglobal > 2 * fny[0])
{
int recvfrom = 0;
if (iglobal <= fny[0])
recvfrom = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
else
recvfrom = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
// ofs << "task " << CONFIG::MPI_task_rank << " : receive #" << iglobal << " from task "
// << recvfrom << std::endl;
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
// ofs << "---> ok! " << (bool)(status.Get_error()==MPI::SUCCESS) <<
// std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
else if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// fp.kelem(i,jp,kp) = crecvbuf_[j*f.sizes_[3]+k];
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to set status as wait does not necessarily modify it
// c.f. http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
// ofs << "task " << CONFIG::MPI_task_rank << " : checking request No" << i << std::endl;
MPI_Wait(&req[i], &status);
// ofs << "---> ok!" << std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
}
// usleep(1000);
MPI_Barrier(MPI_COMM_WORLD);
// std::cerr << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed! <<<<<"
// << std::endl; ofs << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed!
// <<<<<" << std::endl;
csoca::dlog.Print("[MPI] Completed scatter for convolution, took %fs\n",
get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI ///////////////////////////////////////////////////////////////
}
template <typename operator_t>
void unpad(const Grid_FFT<data_t> &fp, Grid_FFT<data_t> &f, operator_t op )
{
// assert(fp.n_[0] == 3 * f.n_[0] / 2);
// assert(fp.n_[1] == 3 * f.n_[1] / 2);
// assert(fp.n_[2] == 3 * f.n_[2] / 2);
// make sure we're in Fourier space...
assert( fp.space_ == kspace_id );
f.FourierTransformForward();
size_t dn[3] = {
fp.n_[0] - f.n_[0],
fp.n_[1] - f.n_[1],
fp.n_[2] - f.n_[2],
};
const double rfac = std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
for (size_t i = 0; i < f.size(0); ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < f.size(1); ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < f.size(2); ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
f.kelem(i, j, k) = op(fp.kelem(ip, jp, kp) / rfac, f.kelem(i, j, k));
}
}
}
#else /// then USE_MPI is defined //////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
size_t maxslicesz = fp.sizes_[1] * fp.sizes_[3] * 2;
std::vector<ccomplex_t> crecvbuf_(maxslicesz / 2,0);
real_t* recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
std::vector<ptrdiff_t>
offsets_(CONFIG::MPI_task_size, 0),
offsetsp_(CONFIG::MPI_task_size, 0),
sizes_(CONFIG::MPI_task_size, 0),
sizesp_(CONFIG::MPI_task_size, 0);
size_t tsize = f.size(0), tsizep = fp.size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&fp.local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::ilog << "[MPI] Started gather for convolution";
MPI_Barrier(MPI_COMM_WORLD);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[4] = {fp.size(0), fp.size(1), fp.size(2), fp.size(3)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
size_t slicesz = fp.size(1) * fp.size(3);
if (typeid(data_t) == typeid(real_t))
slicesz *= 2; // then sizeof(real_t) gives only half of a complex
MPI_Datatype datatype =
(typeid(data_t) == typeid(float))
? MPI_FLOAT
: (typeid(data_t) == typeid(double))
? MPI_DOUBLE
: (typeid(data_t) == typeid(std::complex<float>))
? MPI_COMPLEX
: (typeid(data_t) == typeid(std::complex<double>))
? MPI_DOUBLE_COMPLEX
: MPI_INT;
MPI_Status status;
//... local size must be divisible by 2, otherwise this gets too complicated
// assert( tsize%2 == 0 );
f.zero();
std::vector<MPI_Request> req;
MPI_Request temp_req;
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
//... sending
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
else if (iglobal > 2 * fny[0])
{
int sendto = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
}
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
int recvfrom = 0;
if (iglobal < fny[0])
{
recvfrom = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
}
else if (iglobal > fny[0])
{
recvfrom = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &status);
}
else
continue;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k],f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k], f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to preset status as wait does not necessarily modify it to reflect
// success c.f.
// http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
MPI_Wait(&req[i], &status);
assert(status.MPI_ERROR == MPI_SUCCESS);
}
MPI_Barrier(MPI_COMM_WORLD);
csoca::ilog.Print("[MPI] Completed gather for convolution, took %fs", get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI //////////////////////////////////////////////////////////////
}
};

View file

@ -72,6 +72,17 @@ inline int MPI_Get_size( void ){
#endif
#endif
// get task based on offsets
template <typename array_type>
int get_task(ptrdiff_t index, const array_type &offsets, const array_type& sizes,
const int ntasks )
{
int itask = 0;
while (itask < ntasks - 1 && offsets[itask + 1] <= index)
++itask;
return itask;
}
namespace CONFIG
{
extern int MPI_thread_support;

View file

@ -14,231 +14,6 @@ enum space_t
rspace_id
};
template< typename data_t >
class Grid_FFT;
template <typename array_type>
int get_task(ptrdiff_t index, const array_type &offsets, const array_type& sizes,
const int ntasks )
{
int itask = 0;
while (itask < ntasks - 1 && offsets[itask + 1] <= index)
++itask;
return itask;
}
// template <typename data_t, typename operator_t>
// void unpad(const Grid_FFT<data_t> &fp, Grid_FFT<data_t> &f, operator_t op );
template <typename data_t>
void pad_insert(const Grid_FFT<data_t> &f, Grid_FFT<data_t> &fp);
template <typename kdep_functor, typename data_t>
void pad_insertf( kdep_functor kfunc, Grid_FFT<data_t> &fp ){
assert( fp.space_ == kspace_id );
size_t dn[3] = {
fp.n_[0]/3,// fp.n_[0] - f.n_[0],
fp.n_[1]/3,// fp.n_[1] - f.n_[1],
fp.n_[2]/3// fp.n_[2] - f.n_[2],
};
const double rfac = std::pow(1.5,1.5);//std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
fp.zero();
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
//size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
size_t nhalf[3] = {fp.n_[0] / 3, fp.n_[1] / 3, fp.n_[2] / 3};
#pragma omp parallel for
for (size_t i = 0; i < 2*fp.size(0)/3; ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < 2*fp.size(1)/3; ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < 2*fp.size(2)/3; ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
//fp.kelem(ip, jp, kp) = f.kelem(i, j, k) * rfac;
fp.kelem(ip, jp, kp) = kfunc(i, j, k) * rfac;
}
}
}
#else /// then USE_MPI is defined ////////////////////////////////////////////////////////////
throw std::runtime_error("need to implement buffering before sending for MPI");
MPI_Barrier(MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
size_t maxslicesz = fp.sizes_[1] * fp.sizes_[3] * 2;
std::vector<ccomplex_t> crecvbuf_(maxslicesz / 2, 0);
real_t *recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
std::vector<ptrdiff_t>
offsets_(CONFIG::MPI_task_size, 0),
offsetsp_(CONFIG::MPI_task_size, 0),
sizes_(CONFIG::MPI_task_size, 0),
sizesp_(CONFIG::MPI_task_size, 0);
size_t tsize = f.size(0), tsizep = fp.size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&fp.local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::dlog << "[MPI] Started scatter for convolution" << std::endl;
//... collect offsets
assert(f.space_ == kspace_id);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[3] = {fp.size(0), fp.size(1), fp.size(2)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
//... local size must be divisible by 2, otherwise this gets too complicated
assert(f.n_[1] % 2 == 0);
size_t slicesz = f.size(1) * f.size(3); //*2;
// comunicate
if (typeid(data_t) == typeid(real_t))
slicesz *= 2; // then sizeof(real_t) gives only half of a complex
MPI_Datatype datatype =
(typeid(data_t) == typeid(float))
? MPI_FLOAT
: (typeid(data_t) == typeid(double))
? MPI_DOUBLE
: (typeid(data_t) == typeid(std::complex<float>))
? MPI_COMPLEX
: (typeid(data_t) == typeid(std::complex<double>))
? MPI_DOUBLE_COMPLEX
: MPI_INT;
MPI_Status status;
std::vector<MPI_Request> req;
MPI_Request temp_req;
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&f.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)iglobal, MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal << " to task " << sendto << std::endl;
}
if (iglobal > fny[0])
{
int sendto = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&f.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal+fny[0] << " to task " << sendto << std::endl;
}
}
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
if (iglobal < fny[0] || iglobal > 2 * fny[0])
{
int recvfrom = 0;
if (iglobal <= fny[0])
recvfrom = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
else
recvfrom = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
// ofs << "task " << CONFIG::MPI_task_rank << " : receive #" << iglobal << " from task "
// << recvfrom << std::endl;
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
// ofs << "---> ok! " << (bool)(status.Get_error()==MPI::SUCCESS) <<
// std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
else if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// fp.kelem(i,jp,kp) = crecvbuf_[j*f.sizes_[3]+k];
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to set status as wait does not necessarily modify it
// c.f. http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
// ofs << "task " << CONFIG::MPI_task_rank << " : checking request No" << i << std::endl;
MPI_Wait(&req[i], &status);
// ofs << "---> ok!" << std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
}
// usleep(1000);
MPI_Barrier(MPI_COMM_WORLD);
// std::cerr << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed! <<<<<"
// << std::endl; ofs << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed!
// <<<<<" << std::endl;
csoca::dlog.Print("[MPI] Completed scatter for convolution, took %fs\n",
get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI ///////////////////////////////////////////////////////////////
}
template <typename data_t>
class Grid_FFT
@ -439,8 +214,7 @@ public:
double compute_2norm(void)
{
real_t sum1{0.0};
#pragma omp parallel for reduction(+ \
: sum1)
#pragma omp parallel for reduction(+ : sum1)
for (size_t i = 0; i < sizes_[0]; ++i)
{
for (size_t j = 0; j < sizes_[1]; ++j)
@ -462,8 +236,7 @@ public:
double std(void)
{
real_t sum1{0.0}, sum2{0.0};
#pragma omp parallel for reduction(+ \
: sum1, sum2)
#pragma omp parallel for reduction(+ : sum1, sum2)
for (size_t i = 0; i < sizes_[0]; ++i)
{
for (size_t j = 0; j < sizes_[1]; ++j)
@ -485,8 +258,7 @@ public:
double mean(void)
{
real_t sum1{0.0};
#pragma omp parallel for reduction(+ \
: sum1)
#pragma omp parallel for reduction(+ : sum1)
for (size_t i = 0; i < sizes_[0]; ++i)
{
for (size_t j = 0; j < sizes_[1]; ++j)
@ -667,379 +439,3 @@ public:
}
}
};
template <typename data_t, typename operator_t>
void unpad(const Grid_FFT<data_t> &fp, Grid_FFT<data_t> &f, operator_t op )
{
// assert(fp.n_[0] == 3 * f.n_[0] / 2);
// assert(fp.n_[1] == 3 * f.n_[1] / 2);
// assert(fp.n_[2] == 3 * f.n_[2] / 2);
size_t dn[3] = {
fp.n_[0] - f.n_[0],
fp.n_[1] - f.n_[1],
fp.n_[2] - f.n_[2],
};
const double rfac = std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
for (size_t i = 0; i < f.size(0); ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < f.size(1); ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < f.size(2); ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
f.kelem(i, j, k) = op(fp.kelem(ip, jp, kp) / rfac, f.kelem(i, j, k));
}
}
}
#else /// then USE_MPI is defined //////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
size_t maxslicesz = fp.sizes_[1] * fp.sizes_[3] * 2;
std::vector<ccomplex_t> crecvbuf_(maxslicesz / 2,0);
real_t* recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
std::vector<ptrdiff_t>
offsets_(CONFIG::MPI_task_size, 0),
offsetsp_(CONFIG::MPI_task_size, 0),
sizes_(CONFIG::MPI_task_size, 0),
sizesp_(CONFIG::MPI_task_size, 0);
size_t tsize = f.size(0), tsizep = fp.size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&fp.local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::ilog << "[MPI] Started gather for convolution";
MPI_Barrier(MPI_COMM_WORLD);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[4] = {fp.size(0), fp.size(1), fp.size(2), fp.size(3)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
size_t slicesz = fp.size(1) * fp.size(3);
if (typeid(data_t) == typeid(real_t))
slicesz *= 2; // then sizeof(real_t) gives only half of a complex
MPI_Datatype datatype =
(typeid(data_t) == typeid(float))
? MPI_FLOAT
: (typeid(data_t) == typeid(double))
? MPI_DOUBLE
: (typeid(data_t) == typeid(std::complex<float>))
? MPI_COMPLEX
: (typeid(data_t) == typeid(std::complex<double>))
? MPI_DOUBLE_COMPLEX
: MPI_INT;
MPI_Status status;
//... local size must be divisible by 2, otherwise this gets too complicated
// assert( tsize%2 == 0 );
f.zero();
std::vector<MPI_Request> req;
MPI_Request temp_req;
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
//... sending
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
else if (iglobal > 2 * fny[0])
{
int sendto = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
MPI_Isend(&fp.kelem(i * slicesz), (int)slicesz, datatype, sendto, (int)iglobal,
MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
}
}
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
int recvfrom = 0;
if (iglobal < fny[0])
{
recvfrom = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
}
else if (iglobal > fny[0])
{
recvfrom = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &status);
}
else
continue;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k],f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// f.kelem(i,j,k) = crecvbuf_[jp*nfp[3]+kp];
if (k < fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k], f.kelem(i, j, k));
else if (k > fny[2])
f.kelem(i, j, k) = op(crecvbuf_[jp * nfp[3] + k + fny[2]], f.kelem(i, j, k));
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to preset status as wait does not necessarily modify it to reflect
// success c.f.
// http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
MPI_Wait(&req[i], &status);
assert(status.MPI_ERROR == MPI_SUCCESS);
}
MPI_Barrier(MPI_COMM_WORLD);
csoca::ilog.Print("[MPI] Completed gather for convolution, took %fs", get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI //////////////////////////////////////////////////////////////
}
template< typename data_t >
class OrszagConvolver
{
protected:
Grid_FFT<data_t> *f1p_, *f2p_;
std::array<size_t,3> np_;
std::array<real_t,3> length_;
ccomplex_t *crecvbuf_;
real_t *recvbuf_;
ptrdiff_t *offsets_;
ptrdiff_t *offsetsp_;
ptrdiff_t *sizes_;
ptrdiff_t *sizesp_;
private:
int get_task( ptrdiff_t index, const ptrdiff_t *offsets, const ptrdiff_t *sizes, const int ntasks ) const
{
int itask = 0;
while( itask < ntasks-1 && offsets[itask+1] <= index ) ++itask;
return itask;
}
// void pad_insert( const Grid_FFT<data_t> & f, Grid_FFT<data_t> & fp );
// void unpad( const Grid_FFT<data_t> & fp, Grid_FFT< data_t > & f );
public:
OrszagConvolver( const std::array<size_t, 3> &N, const std::array<real_t, 3> &L )
: np_({3*N[0]/2,3*N[1]/2,3*N[2]/2}), length_(L)
{
//... create temporaries
f1p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
f2p_ = new Grid_FFT<data_t>(np_, length_, kspace_id);
#if defined(USE_MPI)
size_t maxslicesz = f1p_->sizes_[1] * f1p_->sizes_[3] * 2;
crecvbuf_ = new ccomplex_t[maxslicesz / 2];
recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
int ntasks(MPI_Get_size());
offsets_ = new ptrdiff_t[ntasks];
offsetsp_ = new ptrdiff_t[ntasks];
sizes_ = new ptrdiff_t[ntasks];
sizesp_ = new ptrdiff_t[ntasks];
size_t tsize = N[0], tsizep = f1p_->size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&f1p_->local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
#endif
}
~OrszagConvolver()
{
delete f1p_;
delete f2p_;
#if defined(USE_MPI)
delete[] crecvbuf_;
delete[] offsets_;
delete[] offsetsp_;
delete[] sizes_;
delete[] sizesp_;
#endif
}
template< typename opp >
void convolve_Hessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2__(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);// / phifac;
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return -kk[d2r[0]] * kk[d2r[1]] * inr.kelem(i,j,k);// / phifac;
}, res, op );
}
template< typename opp >
void convolve_SumHessians( Grid_FFT<data_t> & inl, const std::array<int,2>& d2l, Grid_FFT<data_t> & inr, const std::array<int,2>& d2r1,
const std::array<int,2>& d2r2, Grid_FFT<data_t> & res, opp op ){
// transform to FS in case fields are not
inl.FourierTransformForward();
inr.FourierTransformForward();
// perform convolution of Hessians
this->convolve2__(
[&]( size_t i, size_t j, size_t k ) -> ccomplex_t{
auto kk = inl.template get_k<real_t>(i,j,k);
return -kk[d2l[0]] * kk[d2l[1]] * inl.kelem(i,j,k);// / phifac;
},
[&]( size_t i, size_t j, size_t k ){
auto kk = inr.template get_k<real_t>(i,j,k);
return (-kk[d2r1[0]] * kk[d2r1[1]] -kk[d2r2[0]] * kk[d2r2[1]]) * inr.kelem(i,j,k);
}, res, op );
}
template< typename kfunc1, typename kfunc2, typename opp >
void convolve2__( kfunc1 kf1, kfunc2 kf2, Grid_FFT<data_t> & res, opp op )
{
//... prepare data 1
f1p_->FourierTransformForward(false);
pad_insertf( kf1, *f1p_ );
//... prepare data 1
f2p_->FourierTransformForward(false);
pad_insertf( kf2, *f2p_ );
//... convolve
f1p_->FourierTransformBackward();
f2p_->FourierTransformBackward();
#pragma omp parallel for
for (size_t i = 0; i < f1p_->ntot_; ++i){
(*f2p_).relem(i) *= (*f1p_).relem(i);
}
f2p_->FourierTransformForward();
//... copy data back
res.FourierTransformForward();
unpad(*f2p_, res, op);
}
//... inplace interface
template <typename opp>
void convolve2( Grid_FFT<data_t> & f1, Grid_FFT<data_t> & f2, Grid_FFT<data_t> & res, opp op)// = []( ccomplex_t convres, ccomplex_t res ) -> ccomplex_t{ return convres; } )
{
#if 1
// constexpr real_t fac{ std::pow(1.5,1.5) };
constexpr real_t fac{ 1.0 };
//... copy data 1
f1.FourierTransformForward();
f1p_->FourierTransformForward(false);
pad_insert(f1, *f1p_);
//... copy data 2
f2.FourierTransformForward();
f2p_->FourierTransformForward(false);
pad_insert(f2, *f2p_);
//... convolve
f1p_->FourierTransformBackward();
f2p_->FourierTransformBackward();
for (size_t i = 0; i < f1p_->ntot_; ++i){
(*f2p_).relem(i) *= fac * (*f1p_).relem(i);
}
f2p_->FourierTransformForward();
//... copy data back
res.FourierTransformForward();
unpad(*f2p_, res, op);
#else
res.FourierTransformBackward();
f1.FourierTransformBackward();
f2.FourierTransformBackward();
for (size_t i = 0; i < res.ntot_; ++i){
res.relem(i) = op(f1.relem(i)*f2.relem(i),res.relem(i));
}
#endif
}
//... inplace interface
/*void convolve3( const Grid_FFT<data_t> & f1, const Grid_FFT<data_t> & f2, const Grid_FFT<data_t> & f3, Grid_FFT<data_t> & res )
{
convolve2( f1, f2, res );
convolve2( res, f3, res );
}*/
};

View file

@ -587,226 +587,8 @@ void Grid_FFT<data_t>::ComputePowerSpectrum(std::vector<double> &bin_k, std::vec
}
}
template <typename data_t>
void pad_insert(const Grid_FFT<data_t> &f, Grid_FFT<data_t> &fp)
{
// assert(fp.n_[0] == 3 * f.n_[0] / 2);
// assert(fp.n_[1] == 3 * f.n_[1] / 2);
// assert(fp.n_[2] == 3 * f.n_[2] / 2);
assert( f.space_ == kspace_id );
assert( fp.space_ == kspace_id );
size_t dn[3] = {
fp.n_[0] - f.n_[0],
fp.n_[1] - f.n_[1],
fp.n_[2] - f.n_[2],
};
const double rfac = std::sqrt(fp.n_[0] * fp.n_[1] * fp.n_[2]) / std::sqrt(f.n_[0] * f.n_[1] * f.n_[2]);
fp.zero();
#if !defined(USE_MPI) ////////////////////////////////////////////////////////////////////////////////////
size_t nhalf[3] = {f.n_[0] / 2, f.n_[1] / 2, f.n_[2] / 2};
for (size_t i = 0; i < f.size(0); ++i)
{
size_t ip = (i > nhalf[0]) ? i + dn[0] : i;
for (size_t j = 0; j < f.size(1); ++j)
{
size_t jp = (j > nhalf[1]) ? j + dn[1] : j;
for (size_t k = 0; k < f.size(2); ++k)
{
size_t kp = (k > nhalf[2]) ? k + dn[2] : k;
// if( i==nhalf[0]||j==nhalf[1]||k==nhalf[2]) continue;
fp.kelem(ip, jp, kp) = f.kelem(i, j, k) * rfac;
}
}
}
#else /// then USE_MPI is defined ////////////////////////////////////////////////////////////
MPI_Barrier(MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
size_t maxslicesz = fp.sizes_[1] * fp.sizes_[3] * 2;
std::vector<ccomplex_t> crecvbuf_(maxslicesz / 2, 0);
real_t *recvbuf_ = reinterpret_cast<real_t *>(&crecvbuf_[0]);
std::vector<ptrdiff_t>
offsets_(CONFIG::MPI_task_size, 0),
offsetsp_(CONFIG::MPI_task_size, 0),
sizes_(CONFIG::MPI_task_size, 0),
sizesp_(CONFIG::MPI_task_size, 0);
size_t tsize = f.size(0), tsizep = fp.size(0);
MPI_Allgather(&f.local_1_start_, 1, MPI_LONG_LONG, &offsets_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&fp.local_1_start_, 1, MPI_LONG_LONG, &offsetsp_[0], 1,
MPI_LONG_LONG, MPI_COMM_WORLD);
MPI_Allgather(&tsize, 1, MPI_LONG_LONG, &sizes_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
MPI_Allgather(&tsizep, 1, MPI_LONG_LONG, &sizesp_[0], 1, MPI_LONG_LONG,
MPI_COMM_WORLD);
/////////////////////////////////////////////////////////////////////
double tstart = get_wtime();
csoca::dlog << "[MPI] Started scatter for convolution" << std::endl;
//... collect offsets
assert(f.space_ == kspace_id);
size_t nf[3] = {f.size(0), f.size(1), f.size(2)};
size_t nfp[3] = {fp.size(0), fp.size(1), fp.size(2)};
size_t fny[3] = {f.n_[1] / 2, f.n_[0] / 2, f.n_[2] / 2};
//... local size must be divisible by 2, otherwise this gets too complicated
assert(f.n_[1] % 2 == 0);
size_t slicesz = f.size(1) * f.size(3); //*2;
// comunicate
if (typeid(data_t) == typeid(real_t))
slicesz *= 2; // then sizeof(real_t) gives only half of a complex
MPI_Datatype datatype =
(typeid(data_t) == typeid(float))
? MPI_FLOAT
: (typeid(data_t) == typeid(double))
? MPI_DOUBLE
: (typeid(data_t) == typeid(std::complex<float>))
? MPI_COMPLEX
: (typeid(data_t) == typeid(std::complex<double>))
? MPI_DOUBLE_COMPLEX
: MPI_INT;
MPI_Status status;
std::vector<MPI_Request> req;
MPI_Request temp_req;
for (size_t i = 0; i < nf[0]; ++i)
{
size_t iglobal = i + offsets_[CONFIG::MPI_task_rank];
if (iglobal < fny[0])
{
int sendto = get_task(iglobal, offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&f.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)iglobal, MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal << " to task " << sendto << std::endl;
}
if (iglobal > fny[0])
{
int sendto = get_task(iglobal + fny[0], offsetsp_, sizesp_, CONFIG::MPI_task_size);
MPI_Isend(&f.kelem(i * slicesz), (int)slicesz, datatype, sendto,
(int)(iglobal + fny[0]), MPI_COMM_WORLD, &temp_req);
req.push_back(temp_req);
// ofs << "task " << CONFIG::MPI_task_rank << " : added request No" << req.size()-1 << ":
// Isend #" << iglobal+fny[0] << " to task " << sendto << std::endl;
}
}
for (size_t i = 0; i < nfp[0]; ++i)
{
size_t iglobal = i + offsetsp_[CONFIG::MPI_task_rank];
if (iglobal < fny[0] || iglobal > 2 * fny[0])
{
int recvfrom = 0;
if (iglobal <= fny[0])
recvfrom = get_task(iglobal, offsets_, sizes_, CONFIG::MPI_task_size);
else
recvfrom = get_task(iglobal - fny[0], offsets_, sizes_, CONFIG::MPI_task_size);
// ofs << "task " << CONFIG::MPI_task_rank << " : receive #" << iglobal << " from task "
// << recvfrom << std::endl;
MPI_Recv(&recvbuf_[0], (int)slicesz, datatype, recvfrom, (int)iglobal,
MPI_COMM_WORLD, &status);
// ofs << "---> ok! " << (bool)(status.Get_error()==MPI::SUCCESS) <<
// std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
for (size_t j = 0; j < nf[1]; ++j)
{
if (j < fny[1])
{
size_t jp = j;
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
else if (j > fny[1])
{
size_t jp = j + fny[1];
for (size_t k = 0; k < nf[2]; ++k)
{
// size_t kp = (k>fny[2])? k+fny[2] : k;
// fp.kelem(i,jp,kp) = crecvbuf_[j*f.sizes_[3]+k];
if (k < fny[2])
fp.kelem(i, jp, k) = crecvbuf_[j * f.sizes_[3] + k];
else if (k > fny[2])
fp.kelem(i, jp, k + fny[2]) = crecvbuf_[j * f.sizes_[3] + k];
}
}
}
}
}
for (size_t i = 0; i < req.size(); ++i)
{
// need to set status as wait does not necessarily modify it
// c.f. http://www.open-mpi.org/community/lists/devel/2007/04/1402.php
status.MPI_ERROR = MPI_SUCCESS;
// ofs << "task " << CONFIG::MPI_task_rank << " : checking request No" << i << std::endl;
MPI_Wait(&req[i], &status);
// ofs << "---> ok!" << std::endl;
assert(status.MPI_ERROR == MPI_SUCCESS);
}
// usleep(1000);
MPI_Barrier(MPI_COMM_WORLD);
// std::cerr << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed! <<<<<"
// << std::endl; ofs << ">>>>> task " << CONFIG::MPI_task_rank << " all transfers completed!
// <<<<<" << std::endl;
csoca::dlog.Print("[MPI] Completed scatter for convolution, took %fs\n",
get_wtime() - tstart);
#endif /// end of ifdef/ifndef USE_MPI ///////////////////////////////////////////////////////////////
}
/********************************************************************************************/
template class Grid_FFT<real_t>;
template class Grid_FFT<ccomplex_t>;
// template void unpad(const Grid_FFT<real_t> &fp, Grid_FFT<real_t> &f);
// template void unpad(const Grid_FFT<ccomplex_t> &fp, Grid_FFT<ccomplex_t> &f);
template void pad_insert(const Grid_FFT<real_t> &f, Grid_FFT<real_t> &fp);
template void pad_insert(const Grid_FFT<ccomplex_t> &f, Grid_FFT<ccomplex_t> &fp);

View file

@ -8,6 +8,7 @@
#include <general.hh>
#include <grid_fft.hh>
#include <convolution.hh>
#include <transfer_function_plugin.hh>
#include <random_plugin.hh>
@ -181,8 +182,7 @@ int main( int argc, char** argv )
#if 1
// phi_xx * phi_yy
Conv.convolve_Hessians( phi, {0,0}, phi, {1,1}, phi2, assign_op );
Conv.convolve_Hessians( phi, {0,0}, phi, {2,2}, phi2, add_op );
Conv.convolve_SumHessians( phi, {0,0}, phi, {1,1}, {2,2}, phi2, assign_op );
Conv.convolve_Hessians( phi, {1,1}, phi, {2,2}, phi2, add_op );
Conv.convolve_Hessians( phi, {0,1}, phi, {0,1}, phi2, sub_op );
Conv.convolve_Hessians( phi, {0,2}, phi, {0,2}, phi2, sub_op );
@ -204,9 +204,11 @@ int main( int argc, char** argv )
{
size_t idx = phi2.get_idx(i, j, k);
phi2.relem(idx) = phi_xx.relem(idx)*phi_yy.relem(idx)-phi_xy.relem(idx)*phi_xy.relem(idx)
+phi_xx.relem(idx)*phi_zz.relem(idx)-phi_xz.relem(idx)*phi_xz.relem(idx)
+phi_yy.relem(idx)*phi_zz.relem(idx)-phi_yz.relem(idx)*phi_yz.relem(idx);
phi2.relem(idx) = phi_xx.relem(idx)*(phi_yy.relem(idx)+phi_zz.relem(idx))
+phi_yy.relem(idx)*phi_zz.relem(idx)
-phi_xy.relem(idx)*phi_xy.relem(idx)
-phi_xz.relem(idx)*phi_xz.relem(idx)
-phi_yz.relem(idx)*phi_yz.relem(idx);
}
}
}