1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/halo_mass_profile.py

110 lines
3.5 KiB
Python

import sys
from pathlib import Path
from typing import Dict
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from readfiles import ParticlesMeta, read_file, read_halo_file
from temperatures import calculate_T
from utils import print_progress
def V(r):
return 4 / 3 * np.pi * r ** 3
def halo_mass_profile(
positions: np.ndarray,
center: np.ndarray,
particles_meta: ParticlesMeta,
rmin: float,
rmax: float,
plot=False,
num_bins=30,
):
distances = np.linalg.norm(positions - center, axis=1)
log_radial_bins = np.geomspace(rmin, rmax, num_bins)
bin_masses = []
bin_densities = []
for k in range(num_bins - 1):
bin_start = log_radial_bins[k]
bin_end = log_radial_bins[k + 1]
in_bin = np.where((bin_start < distances) & (distances < bin_end))[0]
count = in_bin.shape[0]
mass = count * particles_meta.particle_mass
volume = V(bin_end) - V(bin_start)
bin_masses.append(mass)
density = mass / volume
bin_densities.append(density)
bin_masses = np.array(bin_masses)
bin_densities = np.array(bin_densities)
bin_masses = np.cumsum(bin_masses)
if plot:
fig: Figure = plt.figure()
ax: Axes = fig.gca()
ax2 = ax.twinx()
ax.loglog(log_radial_bins[:-1], bin_masses, label="counts")
ax2.loglog(log_radial_bins[:-1], bin_densities, label="densities", c="C1")
# ax.set_xlabel(r'R / R$_\mathrm{group}$')
ax.set_ylabel(r"M [$10^{10} \mathrm{M}_\odot$]")
ax2.set_ylabel("density [$\\frac{10^{10} \\mathrm{M}_\\odot}{Mpc^3}$]")
plt.legend()
plt.show()
return log_radial_bins, bin_masses, bin_densities, center
def property_profile(positions: np.ndarray, center: np.ndarray, masses: np.ndarray, properties: Dict[str, np.ndarray],
rmin: float, rmax: float, num_bins: int):
distances = np.linalg.norm(positions - center, axis=1)
log_radial_bins = np.geomspace(rmin, rmax, num_bins)
means = {}
for key in properties.keys():
means[key] = []
for k in range(num_bins - 1):
bin_start = log_radial_bins[k]
bin_end = log_radial_bins[k + 1]
print_progress(k, num_bins - 2, bin_end)
in_bin = np.where((bin_start < distances) & (distances < bin_end))[0]
masses_in_ring = masses[in_bin]
for property, property_values in properties.items():
if property == "InternalEnergies":
continue
prop_in_ring = property_values[in_bin]
if property == "Temperatures":
prop_in_ring = np.array([calculate_T(u) for u in prop_in_ring])
# mean_in_ring_unweighted = np.mean(prop_in_ring)
mean_in_ring = (prop_in_ring * masses_in_ring).sum() / masses_in_ring.sum()
# print(mean_in_ring_unweighted, mean_in_ring)
means[property].append(mean_in_ring)
return log_radial_bins, means
if __name__ == "__main__":
input_file = Path(sys.argv[1])
df, particles_meta = read_file(input_file)
df_halos = read_halo_file(input_file.with_name("fof_" + input_file.name))
print(df)
halo_id = 1
while True:
particles_in_halo = df.loc[df["FOFGroupIDs"] == halo_id]
if len(particles_in_halo) > 1:
break
halo_id += 1
halo = df_halos.loc[halo_id]
halo_mass_profile(particles_in_halo[["X", "Y", "Z"]].to_numpy(), halo, particles_meta, plot=True)