1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00

major improvements to auriga/richings plots and barion data

This commit is contained in:
Lukas Winkler 2022-08-31 15:26:27 +02:00
parent 2144adac4b
commit cfd008bc3e
Signed by: lukas
GPG key ID: 54DE4D798D244853
7 changed files with 217 additions and 171 deletions

View file

@ -4,6 +4,7 @@ from enum import Enum
from pathlib import Path
from pprint import pprint
from subprocess import run
from sys import argv
from typing import List, Tuple
import h5py
@ -28,7 +29,7 @@ from nfw import fit_nfw
from paths import auriga_dir, richings_dir
from ramses import load_ramses_data, get_slice_argument, load_slice_data
from readfiles import read_file, read_halo_file, ParticlesMeta
from slices import create_2d_slice
from slices import create_2d_slice, filter_3d
from utils import read_swift_config, print_wall_time, figsize_from_page_fraction
@ -37,14 +38,22 @@ class Mode(Enum):
auriga6 = 2
class Plot(Enum):
auriga_plots = "auriga"
richings_bary = "richings_bary"
mode = Mode.richings
try:
plottype = Plot(argv[1])
except KeyError:
plottype = None
cache = HDFCache(Path("auriga_cache.hdf5"))
if mode == Mode.richings:
boxsize = 67.77
else:
boxsize = None # not yet needed
if plottype == Plot.auriga_plots:
mode = Mode.auriga6
def dir_name_to_parameter(dir_name: str):
@ -68,7 +77,12 @@ def main():
ax1: Axes = fig1.gca()
fig2: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax2: Axes = fig2.gca()
fig4, axs_baryon = plt.subplots(nrows=2, ncols=4, sharex="all", sharey="all", figsize=(10, 4))
axs_baryon: List[List[Axes]]
fig4, axs_baryon = plt.subplots(
nrows=2, ncols=4,
sharex="all", sharey="all",
figsize=figsize_from_page_fraction(columns=2, height_to_width=0.5)
)
fig5: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax5: Axes = fig5.gca()
fig6: Figure = plt.figure(figsize=figsize_from_page_fraction())
@ -108,14 +122,18 @@ def main():
if not is_by_adrian:
levelmin, levelmin_TF, levelmax = dir_name_to_parameter(dir.name)
print(levelmin, levelmin_TF, levelmax)
if not has_baryons:
continue
if levelmax != 11:
continue
if not is_ramses:
continue
if plottype == Plot.auriga_plots:
if (levelmin, levelmin_TF, levelmax) == (7, 9, 9):
continue
elif plottype == Plot.richings_bary:
if not has_baryons:
continue
if levelmax != 11:
continue
# if not is_ramses:
# continue
input_file = dir / "output_0009.hdf5"
input_file = dir / "output_0007.hdf5"
if mode == Mode.richings:
input_file = dir / "output_0004.hdf5"
if is_by_adrian or is_ramses:
@ -172,7 +190,8 @@ def main():
center = np.array([halo.X, halo.Y, halo.Z])
center = find_center(df, center)
log_radial_bins, bin_masses, bin_densities, center = halo_mass_profile(
df, center, particles_meta, plot=False, num_bins=100, rmin=0.002, rmax=6.5
df[["X", "Y", "Z"]].to_numpy(), center, particles_meta, plot=False,
num_bins=100, rmin=0.002, rmax=6.5
)
i_min_border = np.argmax(
0.01 < log_radial_bins
@ -195,9 +214,9 @@ def main():
with reference_file.open("wb") as f:
pickle.dump([log_radial_bins, bin_masses, bin_densities], f)
if is_by_adrian:
label = "reference"
label = "Reference"
else:
label = f"{levelmin}, {levelmin_TF}, {levelmax}"
label = f"({levelmin}, {levelmin_TF}, {levelmax})"
ax1.loglog(log_radial_bins[:-1], bin_masses, label=label, c=f"C{i}")
ax2.loglog(log_radial_bins[:-1], bin_densities, label=label, c=f"C{i}")
@ -222,8 +241,7 @@ def main():
ax.axvline(4 * softening_length, color=f"C{i}", linestyle="dotted")
# for ax in [ax1, ax2]:
# ax.axvline(vr_halo.Rvir, color=f"C{i}", linestyle="dashed")
X, Y, Z = df.X.to_numpy(), df.Y.to_numpy(), df.Z.to_numpy()
coords = df[["X", "Y", "Z"]].to_numpy()
# shift: (-6, 0, -12)
# if not is_by_adrian:
@ -232,28 +250,54 @@ def main():
# zshift = Zc - Zc_adrian
# print("shift", xshift, yshift, zshift)
X -= center[0]
Y -= center[1]
Z -= center[2]
coords_centered = coords - center
rho, extent = cic_from_radius(X, Z, 4000, 0, 0, 5, periodic=False)
rho, extent = cic_from_radius(coords_centered[::, 0], coords_centered[::, 2], 500, 0, 0, 1.5, periodic=False)
vmin = min(vmin, rho.min())
vmax = max(vmax, rho.max())
images.append(
Result(
rho=rho,
title=str(dir.name),
levels=(levelmin, levelmin_TF, levelmax) if levelmin else None,
)
res = Result(
rho=rho,
title=f"levelmin={levelmin}, levelmin_TF={levelmin_TF}, levelmax={levelmax}" if not is_by_adrian else "Reference",
levels=(levelmin, levelmin_TF, levelmax) if not is_by_adrian else (100, 100, 100),
)
images.append(res)
i += 1
if has_baryons:
interpolation_method = "nearest" # "linear"
bary_file = dir / "output_00009" if is_ramses else input_file
radius = 10
if is_ramses:
s: RamsesSnap = pynbody.load(str(bary_file))
gas_data: FamilySubSnap = s.gas
temperature_array: SimArray = gas_data["temp"]
p_array: SimArray = gas_data["p"].in_units("1e10 Msol Mpc^-3 km^2 s^-2")
rho_array: SimArray = gas_data["rho"].in_units("1e10 Msol Mpc^-3")
coord_array: SimArray = gas_data["pos"].in_units("Mpc")
mass_array = np.asarray(gas_data["mass"].in_units("1e10 Msol"))
bary_coords = np.asarray(coord_array)
bary_properties = {
"Temperatures": np.asarray(temperature_array.in_units("K")),
"Pressures": np.asarray(p_array),
"Densities": np.asarray(rho_array),
"Entropies": np.asarray(log10(p_array / rho_array ** (5 / 3))),
}
else:
with h5py.File(input_file) as f:
pt0 = f["PartType0"]
bary_coords = pt0["Coordinates"][:]
mass_array = pt0["Masses"][:]
bary_properties = {
"InternalEnergies": pt0["InternalEnergies"][:],
"Densities": pt0["Densities"][:],
"Pressures": pt0["Pressures"][:],
# "Entropies": log10(pt0["Densities"][:] / pt0["Densities"][:] ** (5 / 3)),
"Entropies": pt0["Entropies"][:]
}
bary_properties["Temperatures"] = bary_properties["InternalEnergies"]
radius = 1.9
resolution = 1000
# xrange[0], xrange[-1], yrange[0], yrange[-1]
extent = [center[0] - radius, center[0] + radius,
center[1] - radius, center[1] + radius]
@ -261,18 +305,22 @@ def main():
ramses_done = False
for ii, property in enumerate(["cic", "Densities", "Entropies", "Temperatures"]):
print("property:", property)
key = f"grid_{property}_{interpolation_method}_{radius}"
key = f"grid_{resolution}_{property}_{interpolation_method}_{radius}"
cached_grid = cache.get(key, str(bary_file))
if cached_grid is not None and not is_ramses:
if cached_grid is not None:
grid = cached_grid
else:
print("grid not yet cached, calculating now")
if property == "cic":
rho, _ = cic_range(X + center[0], Y + center[1], 1000, *extent, periodic=False)
# TODO: filter in Z-axis
coords_in_box = filter_3d(coords, extent, zlimit=(center[2] - .1, center[2] + .1))
rho, _ = cic_range(coords_in_box[::, 0], coords_in_box[::, 1], resolution, *extent, periodic=False)
grid = 1.1 + rho.T
else:
if not is_ramses:
grid = create_2d_slice(bary_file, center, property=property,
grid = create_2d_slice(center, coords=bary_coords,
resolution=resolution,
property_name=property,
property_data=bary_properties[property],
extent=extent, method=interpolation_method)
else:
frac_center = center / 100
@ -280,24 +328,24 @@ def main():
print(frac_extent)
print(frac_center)
args, imager_dir = get_slice_argument(frac_extent, frac_center, bary_file,
depth=.001)
args, imager_dir = get_slice_argument(
frac_extent, frac_center,
bary_file, depth=.001
)
print(" ".join(args))
if not ramses_done:
run(args, cwd=imager_dir)
ramses_done = True
property_map = {
"Densities": "rhomap",
"Entropies": "Smap", # TODO: check
"InternalEnergies": None,
"Entropies": "Smap",
"Temperatures": "Tmap"
}
fname = imager_dir / f"snapshot_{property_map[property]}_zproj_zobs-0p00.bin"
grid = load_slice_data(fname).T
cache.set(key, grid, str(input_file), compressed=True)
ax_baryon: Axes = axs_baryon[baryon_plot_counter, ii]
cache.set(key, grid, str(bary_file), compressed=True)
ax_baryon = axs_baryon[baryon_plot_counter][ii]
img: AxesImage = ax_baryon.imshow(
grid,
norm=LogNorm(),
@ -305,56 +353,30 @@ def main():
origin="lower",
extent=extent,
)
ax_baryon.set_title(property)
if baryon_plot_counter == 0:
ax_baryon.set_title(property)
# ax_baryon.set_xlabel("X")
# ax_baryon.set_ylabel("Y")
ax_baryon.set_aspect("equal")
# exit()
baryon_plot_counter += 1
continue
if not is_ramses: # TODO
continue
s: RamsesSnap = pynbody.load(str(bary_file))
gas_data: FamilySubSnap = s.gas
temperature_array: SimArray = gas_data["temp"]
p_array: SimArray = gas_data["p"]
rho_array: SimArray = gas_data["rho"]
coord_array: SimArray = gas_data["pos"]
coordinates = np.asarray(coord_array.in_units("Mpc"))
properties = {
"temperature": np.asarray(temperature_array.in_units("K")),
"entropy": np.asarray(log10(p_array / rho_array ** (5 / 3))),
}
r, prof = property_profile(bary_coords, center, mass_array, bary_properties, num_bins=100, rmin=0.002,
rmax=6.5)
integrator_name = "Ramses" if is_ramses else "Swift"
label = f"{integrator_name} {levelmin}, {levelmin_TF}, {levelmax}"
ax5.set_title("Densities")
ax6.set_title("Pressures")
ax5.loglog(r[1:], prof["Densities"], label=label)
ax6.loglog(r[1:], prof["Pressures"], label=label)
r, prof = property_profile(coordinates, center, properties, num_bins=100, rmin=0.002, rmax=6.5)
ax5.loglog(r[1:], prof["temperature"])
ax6.semilogx(r[1:], prof["entropy"])
plt.show()
exit()
# # quick baryon profiles using pynbody
# s.gas["pos"] -= np.asarray(center)
# print("profile")
# p = Profile(s.gas, ndim=3)
# fig, ax = create_figure()
# ax5.plot(p['rbins'], p['density'], 'k')
# plt.show()
# exit()
# plot_cic(
# rho, extent,
# title=str(dir.name)
# )
ax1.legend()
ax2.legend()
fig1.tight_layout()
fig2.tight_layout()
# fig3: Figure = plt.figure(figsize=(9, 9))
# axes: List[Axes] = fig3.subplots(3, 3, sharex=True, sharey=True).flatten()
fig3: Figure = plt.figure(
figsize=figsize_from_page_fraction(columns=2, height_to_width=1)
# just a bit more than 2/3 so that the two rows don't overlap
figsize=figsize_from_page_fraction(columns=2, height_to_width=33 / 48)
)
axes: List[Axes] = fig3.subplots(3, 3, sharex=True, sharey=True).flatten()
axes: List[Axes] = fig3.subplots(2, 3, sharex="all", sharey="all").flatten()
images.sort(key=lambda r: r.levels, reverse=True)
for result, ax in zip(images, axes):
data = 1.1 + result.rho
@ -365,21 +387,31 @@ def main():
norm=LogNorm(vmin=vmin_scaled, vmax=vmax_scaled),
extent=extent,
origin="lower",
cmap="Greys",
interpolation="none"
)
ax.set_title(result.title)
ax.text(
0.5,
0.95,
result.title,
horizontalalignment="center",
verticalalignment="top",
transform=ax.transAxes,
)
fig3.tight_layout()
fig3.subplots_adjust(right=0.825)
cbar_ax = fig3.add_axes([0.85, 0.05, 0.05, 0.9])
fig3.colorbar(img, cax=cbar_ax)
for ax in [ax1, ax2, ax5, ax6]:
ax.legend()
for fig in [fig1, fig2, fig3, fig4, fig5, fig6]:
fig.tight_layout()
fig.subplots_adjust(wspace=0, hspace=0)
axs_baryon[0][0].set_ylabel("Swift")
axs_baryon[1][0].set_ylabel("Ramses")
fig1.savefig(Path(f"~/tmp/auriga1.pdf").expanduser())
fig2.savefig(Path(f"~/tmp/auriga2.pdf").expanduser())
fig3.savefig(Path("~/tmp/auriga3.pdf").expanduser())
fig1.savefig(Path(f"~/tmp/{plottype.value}1.pdf").expanduser())
fig2.savefig(Path(f"~/tmp/{plottype.value}2.pdf").expanduser())
fig3.savefig(Path(f"~/tmp/{plottype.value}3.pdf").expanduser())
fig4.tight_layout()
fig4.savefig(Path("~/tmp/slice.png").expanduser(), dpi=300)
fig4.savefig(Path(f"~/tmp/{plottype.value}4.pdf").expanduser())
pprint(centers)
plt.show()

View file

@ -4,12 +4,12 @@ from typing import Dict
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from scipy.spatial import KDTree
from readfiles import ParticlesMeta, read_file, read_halo_file
from temperatures import calculate_T
from utils import print_progress
def V(r):
@ -17,7 +17,7 @@ def V(r):
def halo_mass_profile(
particles: pd.DataFrame,
positions: np.ndarray,
center: np.ndarray,
particles_meta: ParticlesMeta,
rmin: float,
@ -25,9 +25,7 @@ def halo_mass_profile(
plot=False,
num_bins=30,
):
positions = particles[["X", "Y", "Z"]].to_numpy()
distances = np.linalg.norm(positions - center, axis=1)
group_radius = distances.max()
log_radial_bins = np.geomspace(rmin, rmax, num_bins)
@ -65,27 +63,31 @@ def halo_mass_profile(
return log_radial_bins, bin_masses, bin_densities, center
def property_profile(positions: np.ndarray, center: np.ndarray, properties: Dict[str, np.ndarray],
def property_profile(positions: np.ndarray, center: np.ndarray, masses: np.ndarray, properties: Dict[str, np.ndarray],
rmin: float, rmax: float, num_bins: int):
print("building KDTree")
tree = KDTree(positions)
print("done")
distances = np.linalg.norm(positions - center, axis=1)
log_radial_bins = np.geomspace(rmin, rmax, num_bins)
particles_inner_ring = set(tree.query_ball_point(center, rmin))
means = {}
for key in properties.keys():
means[key] = []
for r in log_radial_bins[1:]:
print(r)
particles_inside = set(tree.query_ball_point(center, r))
particles_in_ring = particles_inside - particles_inner_ring
for k in range(num_bins - 1):
bin_start = log_radial_bins[k]
bin_end = log_radial_bins[k + 1]
print_progress(k, num_bins - 2, bin_end)
in_bin = np.where((bin_start < distances) & (distances < bin_end))[0]
masses_in_ring = masses[in_bin]
for property, property_values in properties.items():
prop_in_ring = property_values[list(particles_in_ring)]
mean_in_ring = np.mean(prop_in_ring)
if property == "InternalEnergies":
continue
prop_in_ring = property_values[in_bin]
if property == "Temperatures":
prop_in_ring = np.array([calculate_T(u) for u in prop_in_ring])
# mean_in_ring_unweighted = np.mean(prop_in_ring)
mean_in_ring = (prop_in_ring * masses_in_ring).sum() / masses_in_ring.sum()
# print(mean_in_ring_unweighted, mean_in_ring)
means[property].append(mean_in_ring)
particles_inner_ring = particles_inside
return log_radial_bins, means
@ -105,4 +107,4 @@ if __name__ == "__main__":
halo = df_halos.loc[halo_id]
halo_mass_profile(particles_in_halo, halo, particles_meta, plot=True)
halo_mass_profile(particles_in_halo[["X", "Y", "Z"]].to_numpy(), halo, particles_meta, plot=True)

View file

@ -6,3 +6,5 @@ auriga_dir = Path("/path/to/auriga6/")
richings_dir = Path("path/to/richings21_ics/").expanduser()
spectra_dir = Path("/path/to/git/spectra/build/")
has_1024_simulations = False
ramses_imager = Path("~/cosmoca/RamsesImager/ramses_imager").expanduser()
pbh_dir = Path("~/cosmos_data/PBH/").expanduser()

View file

@ -1,18 +1,16 @@
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from cic import cic_from_radius, plot_cic
from find_center import find_center
from halo_mass_profile import halo_mass_profile
from paths import pbh_dir
from readfiles import read_g4_file, ParticlesMeta
from utils import figsize_from_page_fraction
def cic_comparison(pbh_high_coord, ref_high_coord,center):
def cic_comparison(pbh_high_coord, ref_high_coord, center):
rhos = []
i = 0
for coord in [ref_high_coord, pbh_high_coord]:
@ -38,7 +36,7 @@ def main():
pbh_dir / "10000sigma" / "snapshot_005.hdf5",
zoom_type="pbh")
center = [30, 32, 30]
cic_comparison(ref_data[0], pbh_data[0],center)
cic_comparison(ref_data[0], pbh_data[0], center)
fig1: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax1: Axes = fig1.gca()
fig2: Figure = plt.figure(figsize=figsize_from_page_fraction())
@ -46,7 +44,6 @@ def main():
centered = False
for data in [ref_data, pbh_data]:
highres_coords, lowres_coords, highres_mass, lowres_mass = data
df = pd.DataFrame(highres_coords, columns=["X", "Y", "Z"])
particles_meta = ParticlesMeta(particle_mass=highres_mass)
# center = np.median(highres_coords, axis=0)
print(center)
@ -54,13 +51,13 @@ def main():
# center = find_center(df, center, initial_radius=0.01)
centered = True
log_radial_bins, bin_masses, bin_densities, center = halo_mass_profile(
df, center, particles_meta, plot=False, num_bins=100, vmin=0.002, vmax=5
highres_coords, center, particles_meta, plot=False, num_bins=100, rmin=0.002, rmax=5
)
ax1.loglog(log_radial_bins[:-1], bin_masses)
ax2.loglog(log_radial_bins[:-1], bin_densities)
plt.show()
cic_comparison(ref_data[0], pbh_data[0],center)
cic_comparison(ref_data[0], pbh_data[0], center)
if __name__ == '__main__':

View file

@ -1,12 +1,15 @@
from pathlib import Path
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import pynbody
from pynbody.analysis.profile import Profile
from pynbody.array import SimArray
from pynbody.snapshot.ramses import RamsesSnap
from readfiles import ParticlesMeta
from utils import create_figure
def load_ramses_data(ramses_dir: Path):
@ -15,7 +18,12 @@ def load_ramses_data(ramses_dir: Path):
coord_array: SimArray = s.dm["pos"]
a = s.properties["a"]
print("RAMSES a", a)
# p = Profile(s.gas, ndim=3)
# s.gas["pos"]-=
# fig,ax=create_figure()
# ax.plot(p['rbins'], p['density'], 'k')
# plt.show()
# exit()
masses = np.asarray(mass_array.in_units("1e10 Msol"))
high_res_mass = np.amin(np.unique(masses)) # get lowest mass of particles
is_high_res_particle = masses == high_res_mass
@ -25,6 +33,7 @@ def load_ramses_data(ramses_dir: Path):
particles_meta = ParticlesMeta(particle_mass=high_res_mass)
center = np.median(hr_coordinates, axis=0)
return hr_coordinates, particles_meta, center

103
slices.py
View file

@ -1,7 +1,5 @@
from pathlib import Path
from typing import List, Tuple
import h5py
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
@ -12,9 +10,9 @@ from utils import create_figure
def filter_3d(
coords: np.ndarray, data: np.ndarray,
extent: List[float]
) -> Tuple[np.ndarray, np.ndarray]:
coords: np.ndarray, extent: List[float], data: np.ndarray = None, zlimit=None
) -> Tuple[np.ndarray, np.ndarray] | np.ndarray:
filter = (
(extent[0] < coords[::, 0]) &
(coords[::, 0] < extent[1]) &
@ -22,57 +20,60 @@ def filter_3d(
(extent[2] < coords[::, 1]) &
(coords[::, 1] < extent[3])
)
if zlimit:
filter = filter & (
(zlimit[0] < coords[::, 2]) &
(coords[::, 2] < zlimit[1])
)
print("before", coords.shape)
data = data[filter]
if data is not None:
data = data[filter]
coords = coords[filter]
print("after", coords.shape)
return coords, data
if data is not None:
return coords, data
return coords
def create_2d_slice(
input_file: Path, center: List[float], extent,
property="InternalEnergies", method="nearest"
) -> np.ndarray:
def create_2d_slice(center: List[float], extent, coords: np.ndarray, property_name: str, property_data: np.ndarray,
resolution: int,
method="nearest") -> np.ndarray:
cut_axis = 2 # Z
with h5py.File(input_file) as f:
pt0 = f["PartType0"]
coords = pt0["Coordinates"][:]
data = pt0[property if property != "Temperatures" else "InternalEnergies"][:]
coords, data = filter_3d(coords, data, extent)
if property == "Temperatures":
print("calculating temperatures")
data = np.array([calculate_T(u) for u in data])
xrange = np.linspace(extent[0],extent[1], 1000)
yrange = np.linspace(extent[2],extent[3], 1000)
gx, gy, gz = np.meshgrid(xrange, yrange, center[cut_axis])
print("interpolating")
grid = griddata(coords, data, (gx, gy, gz), method=method)[::, ::, 0]
return grid
print(grid.shape)
# stats, x_edge, y_edge, _ = binned_statistic_2d(
# coords_in_slice[::, x_axis],
# coords_in_slice[::, y_axis],
# data_in_slice,
# bins=500,
# statistic="mean"
# )
fig, ax = create_figure()
# stats = np.nan_to_num(stats)
print("plotting")
img = ax.imshow(
grid,
norm=LogNorm(),
interpolation="nearest",
origin="lower",
extent=[xrange[0], xrange[-1], yrange[0], yrange[-1]],
)
ax.set_title(input_file.parent.stem)
ax.set_xlabel(x_axis_label)
ax.set_ylabel(y_axis_label)
ax.set_aspect("equal")
fig.colorbar(img, label="Temperatures")
fig.tight_layout()
plt.show()
coords, property_data = filter_3d(coords, extent, property_data)
if property_name == "Temperatures":
print("calculating temperatures")
property_data = np.array([calculate_T(u) for u in property_data])
xrange = np.linspace(extent[0], extent[1], resolution)
yrange = np.linspace(extent[2], extent[3], resolution)
gx, gy, gz = np.meshgrid(xrange, yrange, center[cut_axis])
print("interpolating")
grid = griddata(coords, property_data, (gx, gy, gz), method=method)[::, ::, 0]
return grid
print(grid.shape)
# stats, x_edge, y_edge, _ = binned_statistic_2d(
# coords_in_slice[::, x_axis],
# coords_in_slice[::, y_axis],
# data_in_slice,
# bins=500,
# statistic="mean"
# )
fig, ax = create_figure()
# stats = np.nan_to_num(stats)
print("plotting")
img = ax.imshow(
grid,
norm=LogNorm(),
interpolation="nearest",
origin="lower",
extent=[xrange[0], xrange[-1], yrange[0], yrange[-1]],
)
ax.set_title(input_file.parent.stem)
ax.set_xlabel(x_axis_label)
ax.set_ylabel(y_axis_label)
ax.set_aspect("equal")
fig.colorbar(img, label="Temperatures")
fig.tight_layout()
plt.show()

View file

@ -39,6 +39,9 @@ def read_swift_config(dir: Path):
def print_wall_time(dir: Path):
"""
Attention: This idea is flawed as it only shows the wall time of the last time the simulation was restarted
"""
with (dir / "swift.log").open() as f:
last_line = f.readlines()[-1]
print(last_line)