1
0
Fork 0
mirror of https://github.com/Findus23/cr-search.git synced 2024-09-11 06:03:45 +02:00
cr-search/phrases.py
2023-04-25 22:51:19 +02:00

85 lines
2.6 KiB
Python

import os
from dataclasses import dataclass
import en_core_web_md
from alive_progress import alive_bar
from peewee import chunked
from spacy.lang.en import Language
from spacy.tokens.span import Span
from spacy.tokens.token import Token
from app import db
from models import Episode, Line, Phrase
from stopwords import STOP_WORDS
from utils import clear_cache
os.nice(15)
@dataclass
class Noun:
name: str
count: int = 1
lemma_cache: dict[str, str] = {}
nlp: Language = en_core_web_md.load(disable=["ner", "textcat"])
nlp.Defaults.stop_words = STOP_WORDS
for episode in Episode.select().where((Episode.phrases_imported == False) & (Episode.text_imported == True)).order_by(
Episode.id):
print(episode.video_number, episode.pretty_title)
person = None
text = ""
line_select = Line.select().where(Line.episode == episode)
with alive_bar(line_select.count(), title='Parsing lines') as bar:
for line in Line.select().where(Line.episode == episode).order_by(Line.order):
bar()
if line.person == person:
text += " " + line.text
else:
person = line.person
text += "\n" + line.text
delete = ["\"", "--", "(", ")", "[", "]"]
for string in delete:
text = text.replace(string, "")
print("run nlp")
doc = nlp(text)
print("nlp finished")
nouns: dict[str, Noun] = {}
chunk: Span
noun_chunks = list(doc.noun_chunks)
with alive_bar(len(noun_chunks), title='lemmatizing and counting') as bar:
for chunk in noun_chunks:
bar()
tok: Token
noun_chunk = str(chunk).strip()
if noun_chunk in lemma_cache:
lemmas = lemma_cache[noun_chunk]
else:
lemmas = "|".join([token.lemma_ for token in nlp(noun_chunk)]).lower()
lemma_cache[noun_chunk] = lemmas
if lemmas not in nouns:
nouns[lemmas] = Noun(noun_chunk)
else:
nouns[lemmas].count += 1
with db.atomic():
phrases = []
for lemmas, data in nouns.items():
if "\n" in data.name:
continue
if len(data.name) < 4:
continue
phrases.append(Phrase(text=data.name, count=data.count, episode=episode))
num_per_chunk = 100
chunks = chunked(phrases, num_per_chunk)
with alive_bar(len(phrases) // num_per_chunk + 1, title="saving") as bar:
for chunk in chunks:
bar()
Phrase.bulk_create(chunk)
episode.phrases_imported = True
episode.save()
clear_cache()