mirror of
https://github.com/glatterf42/spectra_python_files.git
synced 2024-09-08 03:03:47 +02:00
73 lines
2.9 KiB
Python
73 lines
2.9 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Mon May 01 14:57:45 2022
|
|
|
|
@author: ben
|
|
"""
|
|
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from pathlib import Path
|
|
import numpy as np
|
|
|
|
basedir = Path("/home/ben/sims/data_swift/monofonic_tests/spectra/")
|
|
|
|
#choose Nres and Lbox:
|
|
waveforms = ['DB2', "DB4", "DB8", "shannon"] #DB2, DB4, DB8, shannon are all we have right now
|
|
Lbox = 100.0 #only option as of now
|
|
Nres1 = 128 #Nres1 should always be smaller than Nres2
|
|
Nres2 = 256 #128, 256 and 512 exist for now
|
|
Nres3 = 512
|
|
k0 = 2 * 3.14159265358979323846264338327950 / Lbox
|
|
knyquist = Nres3 * k0 #Not used at the moment anyway except for upper limit, for which we need the larger Nres
|
|
a = [0.166666, 0.333333, 0.5, 0.666666, 1.0]
|
|
scale_factor = 4 # give index of a list above
|
|
|
|
|
|
def get_pcross_values(waveform: str, Lbox: float, Nres1: int, Nres2: int, scale_factor: int):
|
|
# filename = basedir / f"{waveform}_{Lbox:.0f}/{wave}_{Lbox:.0f}_a{scale_factor}_{Nres1}_{Nres2}_cross_spectrum"
|
|
filename = basedir / f"{wave}_{Lbox:.0f}/{wave}_{Lbox:.0f}_ics_{Nres1}_{Nres2}_cross_spectrum" # for ICs
|
|
|
|
#find columns in file manually
|
|
#is k really in Mpc? Swift doesn't use /h internally at least.
|
|
columns = ["k [Mpc]", "Pcross", "P1", "err. P1", "P2", "err. P2", "P2-1", "err. P2-1", "modes in bin"]
|
|
|
|
df = pd.read_csv(f"{filename}.txt", sep=" ", skipinitialspace=True, header=None, names=columns, skiprows=1)
|
|
|
|
#only consider rows above resolution limit
|
|
df = df[df["k [Mpc]"] >= k0]
|
|
|
|
k = df["k [Mpc]"]
|
|
pcross = df["Pcross"]
|
|
|
|
return k, pcross
|
|
|
|
|
|
for i, wave in enumerate(waveforms):
|
|
k_128_256, pcross_128_256 = get_pcross_values(wave, Lbox, Nres1, Nres2, scale_factor)
|
|
k_128_512, pcross_128_512 = get_pcross_values(wave, Lbox, Nres1, Nres3, scale_factor)
|
|
k_256_512, pcross_256_512 = get_pcross_values(wave, Lbox, Nres2, Nres3, scale_factor)
|
|
|
|
|
|
# Plot the Cross Correlation:
|
|
plt.plot(k_128_256, pcross_128_256, label=f'{wave} {Nres1} {Nres2}', linestyle=':', color=f'C{i}')
|
|
plt.plot(k_128_512, pcross_128_512, label=f"{wave} {Nres1} {Nres3}", linestyle='--', color=f'C{i}')
|
|
plt.plot(k_256_512, pcross_256_512, label=f'{wave} {Nres2} {Nres3}', linestyle='-', color=f'C{i}')
|
|
|
|
# savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_{Nres1}_{Nres2}_{Lbox:.0f}_ics_local") # for ICs
|
|
# plt.title(f"Cross correlation N=({Nres1}, {Nres2}) L={Lbox:.0f} a=0.02") # for ICs
|
|
|
|
savedir = Path(f"/home/ben/Pictures/swift/monofonic_tests/spectra/cross_comparison_{Lbox:.0f}_a{scale_factor}")
|
|
plt.title(f"Cross correlation comparison L={Lbox:.0f} a={a[scale_factor]}")
|
|
|
|
plt.xscale("log")
|
|
plt.xlabel(r"k [$\mathrm{Mpc}^{-1}$]")
|
|
plt.ylabel("C = Pcross")
|
|
plt.ylim(0.8, 1.0)
|
|
plt.xlim(k_128_512[0], knyquist)
|
|
# plt.vlines(knyquist, ymin=min(p1), ymax=max(p1), color="black", linestyles="dashed", label=f"{Nres}")
|
|
plt.legend()
|
|
|
|
plt.savefig(f"{savedir}.png")
|
|
plt.show()
|