mirror of
https://github.com/glatterf42/sims_python_files.git
synced 2024-09-09 04:33:45 +02:00
192 lines
7.1 KiB
Python
192 lines
7.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# import vtk
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
from sys import getsizeof
|
|
|
|
import h5py
|
|
import numba
|
|
import numpy as np
|
|
import scipy.spatial
|
|
|
|
|
|
@numba.njit()
|
|
def determine_desired_range(offset, minimum, upper_limit_bottom, lower_limit_top, maximum):
|
|
a = minimum
|
|
b = maximum
|
|
|
|
if offset < 0:
|
|
a = lower_limit_top
|
|
elif offset > 0:
|
|
b = upper_limit_bottom
|
|
|
|
return a, b
|
|
|
|
|
|
@numba.njit()
|
|
def find_coordinates_to_move(minimum, maximum, x_offset, y_offset, z_offset, move_candidates):
|
|
coordinates_to_move = []
|
|
x_start, x_end = determine_desired_range(x_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
|
y_start, y_end = determine_desired_range(y_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
|
z_start, z_end = determine_desired_range(z_offset, minimum, upper_limit_bottom, lower_limit_top, maximum)
|
|
|
|
for particle in move_candidates:
|
|
point = particle[0:3]
|
|
if x_start <= point[0] <= x_end and y_start <= point[1] <= y_end and z_start <= point[2] <= z_end:
|
|
coordinates_to_move.append(particle)
|
|
|
|
return coordinates_to_move
|
|
|
|
|
|
directory = Path(r"/home/ben/sims/data_swift/monofonic_tests/shannon_256_100/")
|
|
|
|
for filename in sorted(directory.glob("output_0004.hdf5")):
|
|
print(filename)
|
|
file = h5py.File(str(filename), "r")
|
|
Header = file['Header']
|
|
|
|
original_coordinates = file["PartType1"]["Coordinates"][:] # for cdm particles
|
|
names = file["PartType1"]["ParticleIDs"][:]
|
|
velocities = file["PartType1"]["Velocities"][:]
|
|
masses = file['PartType1']['Masses'][:]
|
|
group_ids = file['PartType1']['FOFGroupIDs'][:]
|
|
absolute_velo = np.sqrt(np.sum(velocities ** 2, axis=1))
|
|
|
|
original_data = np.vstack([
|
|
original_coordinates[::, 0],
|
|
original_coordinates[::, 1],
|
|
original_coordinates[::, 2],
|
|
names,
|
|
velocities[::, 0],
|
|
velocities[::, 1],
|
|
velocities[::, 2],
|
|
masses,
|
|
group_ids,
|
|
absolute_velo,
|
|
]).T
|
|
print(original_data.shape)
|
|
assert (original_coordinates == original_data[::, 0:3]).all()
|
|
|
|
boundaries = Header.attrs['BoxSize'] # BoxLength for e5 boxes depends on Nres, 2.36438 for 256, 4.72876 for 512.
|
|
print(boundaries, len(names))
|
|
if not boundaries.shape:
|
|
boundaries = np.array([boundaries] * 3)
|
|
offsets = [-1, 0, 1]
|
|
transformed_data = original_data[:]
|
|
number_of_time_that_points_have_been_found = 0
|
|
|
|
# assumes cube form and 0.1 as desired ratio to move
|
|
minimum = 0.0
|
|
maximum = max(boundaries)
|
|
box_length = maximum - minimum
|
|
# magic number: mean particle separation * 15 in units of box_length
|
|
range_to_move = 0.0586 * box_length # mean particle separation: 0.78125 Mpc for 128, 0.390625 Mpc for 256, etc
|
|
upper_limit_bottom = minimum + range_to_move
|
|
lower_limit_top = maximum - range_to_move
|
|
|
|
print("Find candidates to move...")
|
|
|
|
|
|
@numba.njit()
|
|
def find_move_candidates():
|
|
move_candidates = []
|
|
print("finding move candidates")
|
|
for particle in original_data:
|
|
point = particle[0:3]
|
|
if (
|
|
minimum <= point[0] <= upper_limit_bottom or
|
|
lower_limit_top <= point[0] <= maximum or
|
|
minimum <= point[1] <= upper_limit_bottom or
|
|
lower_limit_top <= point[1] <= maximum or
|
|
minimum <= point[2] <= upper_limit_bottom or
|
|
lower_limit_top <= point[2] <= maximum
|
|
):
|
|
move_candidates.append(particle)
|
|
# print(point)
|
|
return move_candidates
|
|
|
|
|
|
move_candidates = find_move_candidates()
|
|
move_candidates = np.array(move_candidates)
|
|
|
|
print("...done.")
|
|
for x in offsets:
|
|
for y in offsets:
|
|
for z in offsets:
|
|
if (x, y, z) == (0, 0, 0):
|
|
continue
|
|
moved_coordinates = find_coordinates_to_move(minimum, maximum, x, y, z, move_candidates)
|
|
# print(moved_coordinates)
|
|
moved_coordinates = np.array(moved_coordinates)
|
|
# if not moved_coordinates.all():
|
|
# print(f"nothing moved in {(x,y,z)}")
|
|
# continue
|
|
moved_coordinates[::, 0] += x * boundaries[0]
|
|
moved_coordinates[::, 1] += y * boundaries[1]
|
|
moved_coordinates[::, 2] += z * boundaries[2]
|
|
transformed_data = np.vstack((transformed_data, moved_coordinates))
|
|
number_of_time_that_points_have_been_found += 1
|
|
print(f"Points found: {number_of_time_that_points_have_been_found}/26...")
|
|
|
|
# assert coordinates.shape[0] == original_coordinates.shape[0] * 3 ** 3 #check that the new space has the shape we want it to have
|
|
|
|
num_nearest_neighbors = 40
|
|
print("Building 3d-Tree for all particles...")
|
|
coordinates = transformed_data[::, 0:3]
|
|
print(coordinates.shape)
|
|
tree = scipy.spatial.KDTree(coordinates)
|
|
print(getsizeof(tree) / 1024, "KB")
|
|
print("...done.")
|
|
print("Searching neighbours...")
|
|
a = time.perf_counter_ns()
|
|
distances, indices = tree.query([coordinates], k=num_nearest_neighbors, workers=6)
|
|
# shape of closest_neighbours: (1, xxxx, 40)
|
|
b = time.perf_counter_ns()
|
|
print("...found neighbours.")
|
|
print(f"took {(b - a) / 1000 / 1000:.2f} ms")
|
|
distances = distances[0] # to (xxxx, 40)
|
|
indices = indices[0] # to (xxxx, 40)
|
|
print(distances.shape)
|
|
print(indices.shape)
|
|
print(indices)
|
|
mass_array = []
|
|
print("fetching masses")
|
|
for subindices in indices: # subindices is (40)
|
|
# can maybe be optimized to remove loop
|
|
masses = transformed_data[subindices, 7]
|
|
mass_array.append(masses)
|
|
mass_array = np.array(mass_array)
|
|
print("finished fetching masses")
|
|
# print(closest_neighbours, indices)
|
|
# print(indices)
|
|
|
|
# densities = num_nearest_neighbors * mass_per_particle / np.mean(closest_neighbours, axis=1) ** 3
|
|
total_masses = np.sum(mass_array, axis=1)
|
|
densities = total_masses / np.mean(distances, axis=1) ** 3
|
|
alt_densities = total_masses / np.max(distances, axis=1) ** 3
|
|
|
|
# print(closest_neighbours.shape)
|
|
|
|
# print(densities)
|
|
# print(densities.shape)
|
|
all_data = np.column_stack([list(range(densities.shape[0])), transformed_data, densities, alt_densities])
|
|
# print(all_data.shape)
|
|
# print(original_data.shape[0])
|
|
export_data = all_data[:original_data.shape[0]]
|
|
# print(export_data.shape)
|
|
|
|
# all_data = np.append(coordinates, velocities, axis=1)
|
|
# all_data = np.column_stack((all_data, absolute_velo, names, densities))
|
|
# sorted_index = np.argsort(all_data[::, 7], kind="stable")
|
|
# all_data = all_data[sorted_index, :]
|
|
|
|
# np.savetxt("out_"+filename.with_suffix(".csv").name, all_data[indices], delimiter=",", fmt="%.3f", header="x,y,z,vx,vy,vz,v,name") #if indices are needed
|
|
np.savetxt(directory / f"visualisation_{filename.with_suffix('.csv').name}",
|
|
export_data,
|
|
delimiter=",",
|
|
fmt="%.3f",
|
|
header="num,x,y,z,name,vx,vy,vz,masse,groupid,v,density,density_alt")
|
|
file.close()
|