1
0
Fork 0
mirror of https://github.com/glatterf42/sims_python_files.git synced 2024-09-10 05:43:46 +02:00
sims_python_files/get_mass_zoom_halo.py
2022-04-27 11:50:54 +02:00

124 lines
4.1 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 8 11:16:06 2022
@author: ben
"""
import h5py
from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
def V(r):
return 4 * np.pi * r**3 / 3
directory = Path(r"/home/ben/sims/swiftsim/examples/zoom_tests/auriga6_halo_arj")
snap_number = 0 # 7 for our tests
fof_file = h5py.File(directory / f"fof_output_000{snap_number}.hdf5", "r")
file = h5py.File(directory / f'output_000{snap_number}.hdf5', 'r')
PartType1 = file["PartType1"]
highres_groupids = PartType1['FOFGroupIDs'][:]
highres_coordinates = PartType1['Coordinates'][:]
highres_masses = PartType1['Masses'][:]
total_highres_particles = len(highres_groupids)
unique_groups, particle_count = np.unique(highres_groupids, return_counts=True)
print(f'Group IDs: {unique_groups}, Number in them: {particle_count}')
# all particles belonging to no group have group id 2147483647
# for key in fof_file.keys():
# print(key) #for finding all header entries, which are:
groups = fof_file['Groups']
# for key in groups.keys():
# print(key)
centres = groups['Centres'][:]
groupids = groups['GroupIDs'][:]
masses = groups['Masses'][:]
number_of_members = groups['Sizes'][:]
table_width = 4
separate_unique_counter = 0
# for i in range(len(groupids)-1):
for i in range(11):
if np.isin(groupids[i], unique_groups):
highres_members = particle_count[separate_unique_counter]
contamination = (1 - highres_members / number_of_members[i])
print(f'Group: {groupids[i]:{table_width}} | Mass: {masses[i]:{table_width + 1}.{table_width}} | Highres Members: {highres_members:{table_width + 1}} | Total Members: {number_of_members[i]:{table_width}} | Contamination: {contamination * 100:.{table_width}}%\n')
separate_unique_counter += 1
main_group_origin = centres[0]
main_group_mass = masses[0]
distances = []
# masses = []
for j in range(len(highres_groupids)):
if highres_groupids[j] == np.min(unique_groups):
distance = np.linalg.norm(main_group_origin - highres_coordinates[j])
# mass = highres_masses[j]
distances.append(distance)
# masses.append(mass)
group_radius = np.max(np.array(distances))
normalised_distances = np.array(distances) / group_radius
num_bins = 30
log_radial_bins = np.geomspace(0.01, 2, num_bins)
particle_mass = highres_masses[0] # Careful: this assumes that all highres particles have the same mass and that it's exclusively them in the main group,
# so keep an eye on its contamination and adjust accordingly!
counts_in_radial_bins = []
for k in range(len(log_radial_bins) - 1):
count = 0
for member_distance in normalised_distances:
if log_radial_bins[k] <= member_distance < log_radial_bins[k + 1]:
count += 1
volume = V(log_radial_bins[k + 1] * group_radius) - V(log_radial_bins[k] * group_radius)
count /= volume
counts_in_radial_bins.append(count)
plot_log_radial_bins = log_radial_bins[0:len(log_radial_bins) - 1] # there is one fewer bin then there are bin borders
masses_in_radial_bins = np.array(counts_in_radial_bins) * particle_mass
Nres = 128
Lbox = 100
softening = Lbox / Nres / 30
plt.axvline(4 * softening / group_radius, linestyle='--', color='grey')
plt.title('Density profile Auriga 6 ARJ')
plt.xlabel(r'R / $\mathrm{R}_\mathrm{group}$')
plt.ylabel(r'ρ [$10^{10}\ \mathrm{M}_\odot\ /\ \mathrm{Mpc}^3$]')
plt.loglog(plot_log_radial_bins, masses_in_radial_bins)
plt.show()
# kumulatives Dichteprofil -> sollte bei grossen Massen praktisch gleich sein, am besten direkt uebereinander plotten.
# plt.hist2D mit x und y, jeweils Zentrum der Gruppe +- 0.5 Mpc anschauen, alles andere wegwerfen, sollte direkt Struktur erkennen koennen, ob sie gleich ist.
# for i in range(10):
# print(f'Group: {groupids[i]} | Mass: {masses[i]} | Size: {sizes[i]} | Centre: {centres[i]}\n')
# print(list(parameters.attrs.items()))
# use list(Header.attr.keys()) to list all attributes contained in the Header and .attr.values() to see their values
# even otherwise empty things like ICs_parameters can contain such attributes