1
0
Fork 0
mirror of https://github.com/Findus23/se-simulator.git synced 2024-09-10 05:23:47 +02:00
se-simulator/text_generator.py
2018-05-13 13:47:50 +02:00

106 lines
3.2 KiB
Python
Executable file

#!/usr/bin/env python
import os
import jsonlines
import markovify
from markov import MarkovText, MarkovUserName
from utils import *
def get_markov(mode):
if mode == "Usernames":
return MarkovUserName
else:
return MarkovText
def get_state_size(mode):
return 1 if mode == "Titles" else 3 if mode == "Usernames" else 2
def load_chain(chainfile, mode):
markov = get_markov(mode)
with open(chainfile, "r") as myfile:
data = myfile.read()
print("using existing file\n")
return markov.from_json(data)
def generate_chain(sourcedir, chainfile, mode):
combined_cains = None
chainlist = []
markov = get_markov(mode)
i = 0
with jsonlines.open(sourcedir + "/{type}.jsonl".format(type=mode), mode="r") as content:
for text in content:
text = text.strip()
try:
chain = markov(text, get_state_size(mode), retain_original=False)
except KeyError:
continue
chainlist.append(chain)
if i % 100 == 0:
print(i, end="\r")
if i % 10000 == 0:
subtotal_chain = markovify.combine(chainlist)
if not combined_cains:
combined_cains = subtotal_chain
else:
combined_cains = markovify.combine(models=[combined_cains, subtotal_chain])
chainlist = []
i += 1
subtotal_chain = markovify.combine(chainlist)
chain = markovify.combine([combined_cains, subtotal_chain])
with open(chainfile, "w") as outfile:
outfile.write(chain.to_json())
print_ram()
return chain
def get_chain(url, mode):
sourcedir = "raw/{url}".format(url=url, type=mode)
chainfile = "chains/{url}/{type}.chain.json".format(url=url, type=mode)
if os.path.exists(chainfile):
return load_chain(chainfile, mode)
else:
return generate_chain(sourcedir, chainfile, mode)
def generate_text(chain: markovify.Text, model):
if model == "Titles":
return chain.make_short_sentence(70)
if model == "Usernames":
return chain.make_short_sentence(36)
if model == "Questions" or "Answers":
paragraphs = []
sentences = []
count = int((random.randint(2, 6) * random.randint(3, 6) / 5))
for _ in range(count):
sentences.append(chain.make_sentence())
if random.random() < 0.4:
paragraphs.append(sentences)
sentences = []
paragraphs.append(sentences)
return "\n".join([" ".join(paragraph) for paragraph in paragraphs])
return chain.make_sentence()
if __name__ == "__main__":
basedir, mode = get_settings(2)
if mode not in ["Questions", "Answers", "Titles", "Usernames"]:
print("error")
exit()
chain = get_chain("sites/astronomy.stackexchange.com", mode)
for _ in range(10):
# walk = []
# for text in chain.gen():
# if len(walk) > 100:
# break
# walk.append(text)
# result = detokenizer.detokenize(walk, return_str=True)
# print(result.replace("THISISANEWLINE ", "\n"))
print(chain.make_sentence())
print("-----------------------------------")
print_ram()