1
0
Fork 0
mirror of https://github.com/Findus23/rebound-collisions.git synced 2024-09-19 15:53:48 +02:00
rebound-collisions/merge.py

220 lines
8 KiB
Python

from copy import copy
from pprint import pprint
from typing import Tuple, Optional
import numpy as np
from numpy import linalg, sqrt
from rebound import Simulation, Particle
from rebound.simulation import POINTER_REB_SIM, reb_collision
from scipy.constants import astronomical_unit, G
from extradata import ExtraData, ParticleData, CollisionMeta, Input
from massloss import RbfMassloss, Massloss, LeiZhouMassloss, SimpleNNMassloss
from massloss.perfect_merging import PerfectMerging
from utils import unique_hash, clamp, PlanetaryRadius
massloss_estimator: Optional[Massloss] = None # global waterloss estimator cache
def get_mass_fractions(input_data: Input) -> Tuple[float, float, float, CollisionMeta]:
global massloss_estimator
print("v_esc", input_data.escape_velocity)
print("v_orig,v_si", input_data.velocity_original, input_data.velocity_si)
print("v/v_esc", input_data.velocity_esc)
data = copy(input_data)
if data.gamma > 1:
data.gamma = 1 / data.gamma
data.alpha = clamp(data.alpha, 0, 60)
data.velocity_esc = clamp(data.velocity_esc, 1, 5)
m_ceres = 9.393e+20
m_earth = 5.9722e+24
data.projectile_mass = clamp(data.projectile_mass, 2 * m_ceres, 2 * m_earth)
data.gamma = clamp(data.gamma, 1 / 10, 1)
water_retention, mantle_retention, core_retention = \
massloss_estimator.estimate(data.alpha, data.velocity_esc, data.projectile_mass, data.gamma, )
metadata = CollisionMeta()
metadata.interpolation_input = [data.alpha, data.velocity_esc, data.projectile_mass, data.gamma]
metadata.input = input_data
metadata.adjusted_input = data
metadata.raw_water_retention = water_retention
metadata.raw_mantle_retention = mantle_retention
metadata.raw_core_retention = core_retention
water_retention = clamp(water_retention, 0, 1)
mantle_retention = clamp(mantle_retention, 0, 1)
core_retention = clamp(core_retention, 0, 1)
metadata.water_retention = water_retention
metadata.mantle_retention = mantle_retention
metadata.core_retention = core_retention
return water_retention, mantle_retention, core_retention, metadata
def merge_particles(sim_p: POINTER_REB_SIM, collision: reb_collision, ed: ExtraData):
global massloss_estimator
print("--------------")
print("colliding")
sim: Simulation = sim_p.contents
print("current time step", sim.dt)
print(f"p1 is {collision.p1}")
print(f"p2 is {collision.p2}")
# the assignment to cp1 or cp2 seems to be random
# also look at a copy instead of the original particles
# to avoid issues after they have been modified
cp1: Particle = sim.particles[collision.p1].copy()
cp2: Particle = sim.particles[collision.p2].copy()
# just calling the more massive one the target to keep its type/name
# Sun<->Protoplanet -> Sun
# and to keep collsions mostly reproducable
if cp1.m > cp2.m:
target = cp1
projectile = cp2
else: # also when masses are the same
target = cp2
projectile = cp1
if collision.p1 > collision.p2:
lower_index_particle_index = collision.p2
else:
lower_index_particle_index = collision.p1
print(f"colliding {target.hash.value} ({ed.pd(target).type}) "
f"with {projectile.hash.value} ({ed.pd(projectile).type})")
projectile_wmf = ed.pd(projectile).water_mass_fraction
projectile_cmf = ed.pd(projectile).core_mass_fraction
target_wmf = ed.pd(target).water_mass_fraction
target_cmf = ed.pd(target).core_mass_fraction
# get the velocities, velocity differences and unit vector as numpy arrays
# all units are in sytem units (so AU/year)
v1 = np.array(target.vxyz)
v2 = np.array(projectile.vxyz)
r1 = np.array(target.xyz)
r2 = np.array(projectile.xyz)
vdiff = v2 - v1
rdiff = r2 - r1
vdiff_n = linalg.norm(vdiff)
rdiff_n = linalg.norm(rdiff)
print("dt", sim.dt)
# during a collision ias15 should always be used, otherwise something weird has happend
assert sim.ri_mercurius.mode == 1
print("rdiff", rdiff)
print("vdiff", vdiff)
print("sum_radii", target.r + projectile.r)
print("rdiff_n", rdiff_n)
print("vdiff_n", vdiff_n)
ang = float(np.degrees(np.arccos(np.dot(rdiff, vdiff) / (rdiff_n * vdiff_n))))
if ang > 90:
ang = 180 - ang
print("angle_deg", ang)
print()
# get mass fraction
gamma = projectile.m / target.m
# calculate mutual escape velocity (for norming the velocities in the interpolation) in SI units
escape_velocity = sqrt(2 * G * (target.m + projectile.m) / ((target.r + projectile.r) * astronomical_unit))
print("interpolating")
if not massloss_estimator:
methods = [RbfMassloss, LeiZhouMassloss, PerfectMerging, SimpleNNMassloss]
per_name = {}
for method in methods:
per_name[method.name] = method
try:
estimator_class = per_name[ed.meta.massloss_method]
except KeyError:
print("invalid mass loss estimation method")
print("please use one of these:")
print(per_name)
raise
massloss_estimator = estimator_class()
# let interpolation calculate water and mass retention fraction
# meta is just a bunch of intermediate results that will be logged to help
# understand the collisions better
input_data = Input(
alpha=ang,
velocity_original=vdiff_n,
escape_velocity=escape_velocity,
gamma=gamma,
projectile_mass=projectile.m,
target_water_fraction=target_wmf,
projectile_water_fraction=projectile_wmf,
)
water_ret, mantle_ret, core_ret, meta = get_mass_fractions(input_data)
print("mass retentions:", water_ret, mantle_ret, core_ret)
meta.collision_velocities = (v1.tolist(), v2.tolist())
meta.collision_positions = (target.xyz, projectile.xyz)
meta.collision_radii = (target.r, projectile.r)
hash = unique_hash(ed) # hash for newly created particle
# handle loss of water and core mass
water_mass = target.m * target_wmf + projectile.m * projectile_wmf
core_mass = target.m * target_cmf + projectile.m * projectile_cmf
mantle_mass = target.m + projectile.m - water_mass - core_mass
water_mass *= water_ret
mantle_mass *= mantle_ret
core_mass *= core_ret
total_mass = water_mass + mantle_mass + core_mass
final_wmf = water_mass / total_mass
final_cmf = core_mass / total_mass
print(final_wmf)
# create new object preserving momentum
merged_planet = (target * target.m + projectile * projectile.m) / total_mass
merged_planet.m = total_mass
merged_planet.hash = hash
merged_planet.r = PlanetaryRadius(merged_planet.m, final_wmf, final_cmf).total_radius / astronomical_unit
ed.pdata[hash.value] = ParticleData(
water_mass_fraction=final_wmf,
core_mass_fraction=final_cmf,
type=ed.pd(target).type,
total_mass=total_mass
)
meta.final_wmf = final_wmf
meta.final_radius = merged_planet.r
meta.target_wmf = target_wmf
meta.projectile_wmf = projectile_wmf
meta.time = sim.t
pprint(meta)
ed.tree.add(target, projectile, merged_planet, meta)
sim.particles[lower_index_particle_index] = merged_planet
sim.move_to_com()
sim.integrator_synchronize()
sim.ri_mercurius.recalculate_coordinates_this_timestep = 1
sim.ri_mercurius.recalculate_dcrit_this_timestep = 1
print("collision finished")
print("--------------")
# from rebound docs:
# A return value of 0 indicates that both particles remain in the simulation.
# A return value of 1 (2) indicates that particle 1 (2) should be removed from the simulation.
# A return value of 3 indicates that both particles should be removed from the simulation.
# always keep lower index particle and delete other one
# this keeps the N_active working
if lower_index_particle_index == collision.p1:
print("deleting p2")
return 2
elif lower_index_particle_index == collision.p2:
print("deleting p1")
return 1
else:
raise ValueError("invalid index")