1
0
Fork 0
mirror of https://github.com/Findus23/portal-arg-and-SSTV.git synced 2024-09-07 00:53:44 +02:00

initial commit

This commit is contained in:
Lukas Winkler 2020-08-05 19:43:45 +02:00
commit 41d4f083cd
Signed by: lukas
GPG key ID: 54DE4D798D244853
3 changed files with 208 additions and 0 deletions

7
.gitignore vendored Normal file
View file

@ -0,0 +1,7 @@
.idea/
sound
*.mp3
*.ogg
*.wav
*.png
tmp.py

189
main.py Normal file
View file

@ -0,0 +1,189 @@
from typing import List
import numpy as np
from matplotlib import pyplot as plt
from numpy import ndarray
from scipy.interpolate import interp1d
from scipy.io import wavfile
from scipy.optimize import curve_fit
def gaus(x, a, x0, sigma):
return a * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))
def peak_finder(signal: ndarray, samples_per_second: int, plot: bool = False, cut_borders: bool = False) -> float:
if cut_borders:
signal = signal[20:]
signal = signal[:-20]
sp: ndarray = np.fft.rfft(signal)
real_spectrum: ndarray = np.abs(sp)
freq = np.fft.rfftfreq(len(signal), 1 / samples_per_second)
peak = freq[np.argmax(real_spectrum)]
# return peak
try:
popt, pcov = curve_fit(gaus, freq, real_spectrum, p0=[3.5e5, peak, 1.6e2], maxfev=2000)
except RuntimeError:
return 0
# print(popt[1], peak)
if plot:
newx = np.linspace(0, np.max(freq), 1000)
plt.figure()
plt.plot(freq, real_spectrum, linewidth=0.3)
plt.plot(newx, gaus(newx, *popt), linewidth=0.3)
plt.show()
return float(popt[1])
def even_parity_check(data: List[bool], parity: bool) -> bool:
total = 0
for bit in data:
if bit:
total += 1
print(total)
print(total % 2)
even = total % 2 == 0
parity_bit = not even
return parity_bit == parity
assert even_parity_check([False, False, True, True, False, True, False], True)
def lsb_first_binary(data: List[bool]) -> int:
i = 1
total = 0
for bit in data:
if bit:
total += i
i *= 2
return total
# 4 + 8 + 32 = 44
assert lsb_first_binary([False, False, True, True, False, True, False]) == 44
def main():
data: ndarray
sunset = False
samples_per_second, data = wavfile.read("sound/ambient/dinosaur3.wav")
# samples_per_second, data = wavfile.read("SSTV_sunset_audio.wav")
spm = samples_per_second // 1000
# silence_len = 134 if sunset else 510 # ms
silence_len = 885 if sunset else 598 # ms
header_len = 300 # ms
# header_break_len = 10 # ms
header_break_len = 30 if sunset else 10 # ms
vis_bit_length = 30 # ms
header1_start = silence_len
header1_end = header1_start + header_len
header_break_start = header1_end
header_break_end = header_break_start + header_break_len
header2_start = header_break_end
header2_end = header2_start + header_len
headers = [
data[header1_start * spm: header1_end * spm],
data[header2_start * spm: header2_end * spm]
]
for header in headers:
header_freq = peak_finder(header, samples_per_second)
print(header_freq)
assert 1895 < header_freq < 1905 # should be 1900 hz
print(header_break_start)
header_break = data[header_break_start * spm: header_break_end * spm]
header_freq = peak_finder(header_break, samples_per_second)
print(header_freq)
assert 1195 < header_freq < 1206 # should be 1200 hz
print("--- VIS start ---")
pos = header2_end
bits: List[bool] = []
for i in range(10):
print(pos, pos + vis_bit_length)
bit_data = data[pos * spm: (pos + vis_bit_length) * spm]
pos += vis_bit_length
pixel_freq = peak_finder(bit_data, samples_per_second, cut_borders=True)
print(pixel_freq)
if i in [0, 9]: # start bit at 1200 Hz, stop bit at 1200 Hz
assert 1190 < pixel_freq < 1210
continue
if 1090 < pixel_freq < 1110:
bits.append(True)
elif 1290 < pixel_freq < 1310:
bits.append(False)
else:
raise ValueError(f"{pixel_freq} hz is not an unique bit")
print("---")
print(pos)
print(bits)
print(bits[:7], bits[7])
assert even_parity_check(bits[:7], bits[7])
mode = lsb_first_binary(bits[:7])
print(mode)
if mode == 44:
martin_m1 = True
robot36 = False
row_width = 447
print("Martin M1 detected")
elif mode == 8:
martin_m1 = False
robot36 = True
row_width = 150
print("Robot 36 detected")
else:
martin_m1 = False
robot36 = False
row_width = 0
print(f"unknown mode: {mode}")
exit()
row_width_padded = row_width + 100
image = []
overlap = 40
row = []
while True:
pixel_data = data[pos * spm - overlap: (pos + 1) * spm + overlap]
pixel_data = pixel_data * np.hamming(len(pixel_data))
pos += 1
if len(pixel_data) != 1 * spm + overlap * 2:
break
pixel_freq = peak_finder(pixel_data, samples_per_second, False)
if pixel_freq < 1300:
if len(row):
if len(row) < row_width_padded:
print(row_width_padded - len(row))
row.extend([0] * (row_width_padded - len(row)))
if len(row) > row_width_padded:
row = row[:250]
image.append(row)
print(len(row), pos)
row = []
else:
row.append(pixel_freq)
image = np.asarray(image)
print(image.shape)
if martin_m1:
grid = 147
image = np.array([image[::, (2 * grid):(3 * grid)], image[::, 0:grid], image[::, grid:2 * grid]])
image -= 1500
image /= 2300 - 1500
image = np.moveaxis(image, 0, -1)
image = image.clip(0, 1)
plt.imshow(image, aspect="auto")
# plt.imsave("output.png", image)
# plt.colorbar()
plt.show()
if __name__ == '__main__':
main()

12
spectrograph.py Normal file
View file

@ -0,0 +1,12 @@
from scipy.io import wavfile
from numpy import ndarray
from matplotlib import pyplot as plt
data: ndarray
samples_per_second, data = wavfile.read("sound/ambient/dinosaur3.wav")
samples_per_ms = samples_per_second // 1000
print(samples_per_ms)
plt.specgram(data[0 * samples_per_ms:20 * samples_per_second], Fs=samples_per_second, scale_by_freq=False)
plt.colorbar()
plt.show()