1
0
Fork 0
mirror of https://github.com/Findus23/nn_evaluate.git synced 2024-09-08 02:03:45 +02:00

add python version

This commit is contained in:
Lukas Winkler 2021-03-21 19:08:39 +01:00
parent 815ae87633
commit 5e1dbac233
Signed by: lukas
GPG key ID: 54DE4D798D244853

100
python/main.py Normal file
View file

@ -0,0 +1,100 @@
import json
from dataclasses import dataclass
from math import exp
from time import monotonic_ns
from typing import List
Layer = List[float]
def relu(x):
return max(0, x)
def sigmoid(x):
return 1 / (1 + exp(-x))
@dataclass
class Model:
means: List[float] # 6
stds: List[float] # 6
hidden_weight: List[List[float]] # 50x6
hidden_bias: List[float] # 50
output_weight: List[List[float]] # 3x50
output_bias: List[float] # 3
@property
def hidden_layer_size(self):
return len(self.hidden_bias)
@property
def input_layer_size(self):
return len(self.means)
@property
def output_layer_size(self):
return len(self.output_bias)
def calculate_layer(self, layer_size, parent_layer_size, parent_layer, weight, bias) -> Layer:
new_layer = []
for hl in range(layer_size):
node = 0
for parent in range(parent_layer_size):
node += parent_layer[parent] * weight[hl][parent]
node += bias[hl]
new_layer.append(node)
return new_layer
def evaluate(self, input: List[float]):
scaled_input = self.scale_input(input)
hidden_layer = self.calculate_layer(
layer_size=self.hidden_layer_size,
parent_layer_size=self.input_layer_size,
parent_layer=scaled_input,
weight=self.hidden_weight,
bias=self.hidden_bias
)
hidden_layer = [relu(x) for x in hidden_layer]
output_layer = self.calculate_layer(
layer_size=self.output_layer_size,
parent_layer_size=self.hidden_layer_size,
parent_layer=hidden_layer,
weight=self.output_weight,
bias=self.output_bias
)
print(output_layer)
output_layer = [sigmoid(x) for x in output_layer]
print(output_layer)
return output_layer
def scale_input(self, input: List[float]):
result = []
for index, parameter in enumerate(input):
result.append((parameter - self.means[index]) / self.stds[index])
return result
with open("../pytorch_model.json") as f:
data = json.load(f)
model = Model(
hidden_weight=data["hidden.weight"],
hidden_bias=data["hidden.bias"],
output_weight=data["output.weight"],
output_bias=data["output.bias"],
means=data["means"],
stds=data["stds"],
)
ang = 30
v = 2
m = 1e24
gamma = 0.6
wp = wt = 1e-4
start = monotonic_ns()
for _ in range(1000):
model.evaluate([ang, v, m, gamma, wt, wp])
exit()
end = monotonic_ns()
print((end - start) / 1000 / 1000)
# [0.6921, 0.8989, 0.9919]