1
0
Fork 0
mirror of https://github.com/glatterf42/music-panphasia.git synced 2024-09-11 06:53:45 +02:00
music-panphasia/schemes.hh
2022-04-29 14:37:23 +02:00

275 lines
6.1 KiB
C++

/*
* schemes.hh
* GravitySolver
*
* Created by Oliver Hahn on 2/1/10.
* Copyright 2010 KIPAC/Stanford University. All rights reserved.
*
*/
#ifndef __SCHEME_HH
#define __SCHEME_HH
#include <vector>
#include <stdexcept>
#include "solver.hh"
//... abstract implementation of the Poisson/Force scheme
template< class L, class G, typename real_t=double >
class scheme
{
public:
typedef L laplacian;
typedef G gradient;
laplacian m_laplacian;
gradient m_gradient;
template< class C >
inline real_t grad_x( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_x( c,i,j,k ); }
template< class C >
inline real_t grad_y( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_y( c,i,j,k ); }
template< class C >
inline real_t grad_z( const C&c, const int i, const int j, const int k )
{ return m_gradient.apply_z( c,i,j,k ); }
template< class C >
inline real_t L_apply( const C&c, const int i, const int j, const int k )
{ return m_laplacian.apply( c,i,j,k ); }
template< class C >
inline real_t L_rhs( const C&c, const int i, const int j, const int k )
{ return m_laplacian.rhs( c,i,j,k ); }
inline real_t ccoeff( void )
{ return m_laplacian.ccoeff(); }
};
template< int nextent, typename T >
class gradient
{
typedef T real_t;
std::vector<real_t> m_stencil;
const unsigned nl;
public:
gradient()
: nl( 2*nextent+1 )
{
m_stencil.assign(nl*nl*nl,(real_t)0.0);
}
real_t& operator()(int i)
{ return m_stencil[i+nextent]; }
const real_t& operator()(int i) const
{ return m_stencil[i+nextent]; }
template< class C >
inline void apply( const C& c, C& f, int dir )
{
f = c;
int nx=c.size(0), ny=c.size(1), nz=c.size(2);
double hx = 1.0/(nx+1.0), hy = 1.0/(ny+1.0), hz = 1.0/(nz+1.0);
f.zero();
if( dir == 0 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int ii = -nextent; ii<=nextent; ++ii )
f(i,j,k) += (*this)(ii) * c(i+ii,j,k)/hx;
else if( dir == 1 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int jj = -nextent; jj<=nextent; ++jj )
f(i,j,k) += (*this)(jj) * c(i,j+jj,k)/hy;
else if( dir == 2 )
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
for( int kk = -nextent; kk<=nextent; ++kk )
f(i,j,k) += (*this)(kk) * c(i,j,k+kk)/hz;
}
};
template< int nextent, typename real_t >
class base_stencil
{
protected:
std::vector<real_t> m_stencil;
const unsigned nl;
public:
bool m_modsource;
public:
base_stencil( bool amodsource = false )
: nl( 2*nextent+1 ), m_modsource( amodsource )
{
m_stencil.assign(nl*nl*nl,(real_t)0.0);
}
real_t& operator()(int i, int j, int k)
{ return m_stencil[((i+nextent)*nl+(j+nextent))*nl+(k+nextent)]; }
const real_t& operator()(unsigned i, unsigned j, unsigned k) const
{ return m_stencil[((i+nextent)*nl+(j+nextent))*nl+(k+nextent)]; }
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k )
{
real_t sum = this->apply( c, i, j, k );
sum -= (*this)(0,0,0) * c(i,j,k);
return sum;
}
inline real_t ccoeff( void )
{
return (*this)(0,0,0);
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k )
{
real_t sum = 0.0;
for( int ii=-nextent; ii<=nextent; ++ii )
for( int jj=-nextent; jj<=nextent; ++jj )
for( int kk=-nextent; kk<=nextent; ++kk )
sum += (*this)(ii,jj,kk) * c(i+ii,j+jj,k+kk);
return sum;
}
template< class C >
inline real_t modsource( const C& c, const int i, const int j, const int k )
{
return 0.0;
}
};
/***************************************************************************************/
/***************************************************************************************/
/***************************************************************************************/
//... Implementation of the Gradient schemes............................................
template< typename real_t >
class deriv_2P : public gradient<1,real_t>
{
public:
deriv_2P( void )
{
(*this)( 0 ) = 0.0;
(*this)(-1 ) = -0.5;
(*this)(+1 ) = +0.5;
}
};
//... Implementation of the Laplacian schemes..........................................
template< typename real_t >
class stencil_7P : public base_stencil<1,real_t>
{
public:
stencil_7P( void )
{
(*this)( 0, 0, 0) = -6.0;
(*this)(-1, 0, 0) = +1.0;
(*this)(+1, 0, 0) = +1.0;
(*this)( 0,-1, 0) = +1.0;
(*this)( 0,+1, 0) = +1.0;
(*this)( 0, 0,-1) = +1.0;
(*this)( 0, 0,+1) = +1.0;
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k ) const
{
return c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1)-6.0*c(i,j,k);
}
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k ) const
{
return c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1);
}
inline real_t ccoeff( void )
{
return -6.0;
}
};
template< typename real_t >
class stencil_13P : public base_stencil<2,real_t>
{
public:
stencil_13P( void )
{
(*this)( 0, 0, 0) = -90.0/12.;
(*this)(-1, 0, 0) =
(*this)(+1, 0, 0) =
(*this)( 0,-1, 0) =
(*this)( 0,+1, 0) =
(*this)( 0, 0,-1) =
(*this)( 0, 0,+1) = 16./12.;
(*this)(-2, 0, 0) =
(*this)(+2, 0, 0) =
(*this)( 0,-2, 0) =
(*this)( 0,+2, 0) =
(*this)( 0, 0,-2) =
(*this)( 0, 0,+2) = -1./12.;
}
template< class C >
inline real_t apply( const C& c, const int i, const int j, const int k )
{
return
(-1.0*(c(i-2,j,k)+c(i+2,j,k)+c(i,j-2,k)+c(i,j+2,k)+c(i,j,k-2)+c(i,j,k+2))
+16.0*(c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1))
-90.0*c(i,j,k))/12.0;
}
template< class C >
inline real_t rhs( const C& c, const int i, const int j, const int k )
{
return
(-1.0*(c(i-2,j,k)+c(i+2,j,k)+c(i,j-2,k)+c(i,j+2,k)+c(i,j,k-2)+c(i,j,k+2))
+16.0*(c(i-1,j,k)+c(i+1,j,k)+c(i,j-1,k)+c(i,j+1,k)+c(i,j,k-1)+c(i,j,k+1)))/12.0;
}
inline real_t ccoeff( void )
{
return -90.0/12.0;
}
};
#endif