1
0
Fork 0
mirror of https://github.com/glatterf42/music-panphasia.git synced 2024-09-13 09:13:46 +02:00
music-panphasia/poisson.cc
2022-04-29 14:37:23 +02:00

1197 lines
35 KiB
C++

/*
poisson.cc - This file is part of MUSIC -
a code to generate multi-scale initial conditions
for cosmological simulations
Copyright (C) 2010 Oliver Hahn
*/
/****** ABSTRACT FACTORY PATTERN IMPLEMENTATION *******/
#include "poisson.hh"
#include "Numerics.hh"
std::map< std::string, poisson_plugin_creator *>&
get_poisson_plugin_map()
{
static std::map< std::string, poisson_plugin_creator* > poisson_plugin_map;
return poisson_plugin_map;
}
void print_poisson_plugins()
{
std::map< std::string, poisson_plugin_creator *>& m = get_poisson_plugin_map();
std::map< std::string, poisson_plugin_creator *>::iterator it;
it = m.begin();
std::cout << " - Available poisson solver plug-ins:\n";
while( it!=m.end() )
{
if( (*it).second )
std::cout << "\t\'" << (*it).first << "\'\n";
LOGINFO("Poisson plug-in :: %s",std::string((*it).first).c_str());
++it;
}
}
/****** CALL IMPLEMENTATIONS OF POISSON SOLVER CLASSES ******/
#include "mg_solver.hh"
#include "fd_schemes.hh"
#ifdef SINGLE_PRECISION
typedef multigrid::solver< stencil_7P<float>, interp_O3_fluxcorr, mg_straight, float > poisson_solver_O2;
typedef multigrid::solver< stencil_13P<float>, interp_O5_fluxcorr, mg_straight, float > poisson_solver_O4;
typedef multigrid::solver< stencil_19P<float>, interp_O7_fluxcorr, mg_straight, float > poisson_solver_O6;
#else
typedef multigrid::solver< stencil_7P<double>, interp_O3_fluxcorr, mg_straight, double > poisson_solver_O2;
typedef multigrid::solver< stencil_13P<double>, interp_O5_fluxcorr, mg_straight, double > poisson_solver_O4;
typedef multigrid::solver< stencil_19P<double>, interp_O7_fluxcorr, mg_straight, double > poisson_solver_O6;
#endif
/**************************************************************************************/
/**************************************************************************************/
#pragma mark -
double multigrid_poisson_plugin::solve( grid_hierarchy& f, grid_hierarchy& u )
{
LOGUSER("Initializing multi-grid Poisson solver...");
unsigned verbosity = cf_.getValueSafe<unsigned>("setup","verbosity",2);
if( verbosity > 0 )
{
std::cout << "-------------------------------------------------------------\n";
std::cout << " - Invoking multi-grid Poisson solver..." << std::endl;
}
double acc = 1e-5, err;
std::string ps_smoother_name;
unsigned ps_presmooth, ps_postsmooth, order;
acc = cf_.getValueSafe<double>("poisson","accuracy",acc);
ps_presmooth = cf_.getValueSafe<unsigned>("poisson","pre_smooth",3);
ps_postsmooth = cf_.getValueSafe<unsigned>("poisson","post_smooth",3);
ps_smoother_name = cf_.getValueSafe<std::string>("poisson","smoother","gs");
order = cf_.getValueSafe<unsigned>( "poisson", "laplace_order", 4 );
multigrid::opt::smtype ps_smtype = multigrid::opt::sm_gauss_seidel;
if ( ps_smoother_name == std::string("gs") )
{
ps_smtype = multigrid::opt::sm_gauss_seidel;
LOGUSER("Selected Gauss-Seidel multigrid smoother");
}
else if ( ps_smoother_name == std::string("jacobi") )
{
ps_smtype = multigrid::opt::sm_jacobi;
LOGUSER("Selected Jacobi multigrid smoother");
}
else if ( ps_smoother_name == std::string("sor") )
{
ps_smtype = multigrid::opt::sm_sor;
LOGUSER("Selected SOR multigrid smoother");
}
else
{
LOGWARN("Unknown multigrid smoother \'%s\' specified. Reverting to Gauss-Seidel.",ps_smoother_name.c_str());
std::cerr << " - Warning: unknown smoother \'" << ps_smoother_name << "\' for multigrid solver!\n"
<< " reverting to \'gs\' (Gauss-Seidel)" << std::endl;
}
double tstart, tend;
#ifdef _OPENMP
tstart = omp_get_wtime();
#else
tstart = (double)clock() / CLOCKS_PER_SEC;
#endif
//----- run Poisson solver -----//
if( order == 2 )
{
LOGUSER("Running multigrid solver with 2nd order Laplacian...");
poisson_solver_O2 ps( f, ps_smtype, ps_presmooth, ps_postsmooth );
err = ps.solve( u, acc, true );
}
else if( order == 4 )
{
LOGUSER("Running multigrid solver with 4th order Laplacian...");
poisson_solver_O4 ps( f, ps_smtype, ps_presmooth, ps_postsmooth );
err = ps.solve( u, acc, true );
}
else if( order == 6 )
{
LOGUSER("Running multigrid solver with 6th order Laplacian..");
poisson_solver_O6 ps( f, ps_smtype, ps_presmooth, ps_postsmooth );
err = ps.solve( u, acc, true );
}
else
{
LOGERR("Invalid order specified for Laplace operator");
throw std::runtime_error("Invalid order specified for Laplace operator");
}
//------------------------------//
#ifdef _OPENMP
tend = omp_get_wtime();
if( verbosity > 1 )
std::cout << " - Poisson solver took " << tend-tstart << "s with " << omp_get_max_threads() << " threads." << std::endl;
#else
tend = (double)clock() / CLOCKS_PER_SEC;
if( verbosity > 1 )
std::cout << " - Poisson solver took " << tend-tstart << "s." << std::endl;
#endif
return err;
}
double multigrid_poisson_plugin::gradient( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
Du = u;
unsigned order = cf_.getValueSafe<unsigned>( "poisson", "grad_order", 4 );
switch( order )
{
case 2:
implementation().gradient_O2( dir, u, Du );
break;
case 4:
implementation().gradient_O4( dir, u, Du );
break;
case 6:
implementation().gradient_O6( dir, u, Du );
break;
default:
LOGERR("Invalid order %d specified for gradient operator", order);
throw std::runtime_error("Invalid order specified for gradient operator!");
}
return 0.0;
}
double multigrid_poisson_plugin::gradient_add( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
//Du = u;
unsigned order = cf_.getValueSafe<unsigned>( "poisson", "grad_order", 4 );
switch( order )
{
case 2:
implementation().gradient_add_O2( dir, u, Du );
break;
case 4:
implementation().gradient_add_O4( dir, u, Du );
break;
case 6:
implementation().gradient_add_O6( dir, u, Du );
break;
default:
LOGERR("Invalid order %d specified for gradient operator!",order);
throw std::runtime_error("Invalid order specified for gradient operator!");
}
return 0.0;
}
void multigrid_poisson_plugin::implementation::gradient_O2( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 2nd order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = 0.5*((*u.get_grid(ilevel))(ix+1,iy,iz)-(*u.get_grid(ilevel))(ix-1,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = 0.5*((*u.get_grid(ilevel))(ix,iy+1,iz)-(*u.get_grid(ilevel))(ix,iy-1,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = 0.5*((*u.get_grid(ilevel))(ix,iy,iz+1)-(*u.get_grid(ilevel))(ix,iy,iz-1))*h;
}
LOGUSER("Done computing a 2nd order finite difference gradient.");
}
void multigrid_poisson_plugin::implementation::gradient_add_O2( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 2nd order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*Du.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*Du.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*Du.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += 0.5*((*u.get_grid(ilevel))(ix+1,iy,iz)-(*u.get_grid(ilevel))(ix-1,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*Du.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*Du.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*Du.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += 0.5*((*u.get_grid(ilevel))(ix,iy+1,iz)-(*u.get_grid(ilevel))(ix,iy-1,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*Du.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*Du.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*Du.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += 0.5*((*u.get_grid(ilevel))(ix,iy,iz+1)-(*u.get_grid(ilevel))(ix,iy,iz-1))*h;
}
LOGUSER("Done computing a 4th order finite difference gradient.");
}
void multigrid_poisson_plugin::implementation::gradient_O4( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 4th order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
h /= 12.0;
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = ((*u.get_grid(ilevel))(ix-2,iy,iz)
-8.0*(*u.get_grid(ilevel))(ix-1,iy,iz)
+8.0*(*u.get_grid(ilevel))(ix+1,iy,iz)
-(*u.get_grid(ilevel))(ix+2,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = ((*u.get_grid(ilevel))(ix,iy-2,iz)
-8.0*(*u.get_grid(ilevel))(ix,iy-1,iz)
+8.0*(*u.get_grid(ilevel))(ix,iy+1,iz)
-(*u.get_grid(ilevel))(ix,iy+2,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) = ((*u.get_grid(ilevel))(ix,iy,iz-2)
-8.0*(*u.get_grid(ilevel))(ix,iy,iz-1)
+8.0*(*u.get_grid(ilevel))(ix,iy,iz+1)
-(*u.get_grid(ilevel))(ix,iy,iz+2))*h;
}
LOGUSER("Done computing a 4th order finite difference gradient.");
}
void multigrid_poisson_plugin::implementation::gradient_add_O4( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 4th order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
h /= 12.0;
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += ((*u.get_grid(ilevel))(ix-2,iy,iz)
-8.0*(*u.get_grid(ilevel))(ix-1,iy,iz)
+8.0*(*u.get_grid(ilevel))(ix+1,iy,iz)
-(*u.get_grid(ilevel))(ix+2,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += ((*u.get_grid(ilevel))(ix,iy-2,iz)
-8.0*(*u.get_grid(ilevel))(ix,iy-1,iz)
+8.0*(*u.get_grid(ilevel))(ix,iy+1,iz)
-(*u.get_grid(ilevel))(ix,iy+2,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) += ((*u.get_grid(ilevel))(ix,iy,iz-2)
-8.0*(*u.get_grid(ilevel))(ix,iy,iz-1)
+8.0*(*u.get_grid(ilevel))(ix,iy,iz+1)
-(*u.get_grid(ilevel))(ix,iy,iz+2))*h;
}
LOGUSER("Done computing a 4th order finite difference gradient.");
}
void multigrid_poisson_plugin::implementation::gradient_O6( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 6th order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
h /= 60.;
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) =
(-(*u.get_grid(ilevel))(ix-3,iy,iz)
+9.0*(*u.get_grid(ilevel))(ix-2,iy,iz)
-45.0*(*u.get_grid(ilevel))(ix-1,iy,iz)
+45.0*(*u.get_grid(ilevel))(ix+1,iy,iz)
-9.0*(*u.get_grid(ilevel))(ix+2,iy,iz)
+(*u.get_grid(ilevel))(ix+3,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) =
(-(*u.get_grid(ilevel))(ix,iy-3,iz)
+9.0*(*u.get_grid(ilevel))(ix,iy-2,iz)
-45.0*(*u.get_grid(ilevel))(ix,iy-1,iz)
+45.0*(*u.get_grid(ilevel))(ix,iy+1,iz)
-9.0*(*u.get_grid(ilevel))(ix,iy+2,iz)
+(*u.get_grid(ilevel))(ix,iy+3,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) =
(-(*u.get_grid(ilevel))(ix,iy,iz-3)
+9.0*(*u.get_grid(ilevel))(ix,iy,iz-2)
-45.0*(*u.get_grid(ilevel))(ix,iy,iz-1)
+45.0*(*u.get_grid(ilevel))(ix,iy,iz+1)
-9.0*(*u.get_grid(ilevel))(ix,iy,iz+2)
+(*u.get_grid(ilevel))(ix,iy,iz+3))*h;
}
LOGUSER("Done computing a 6th order finite difference gradient.");
}
void multigrid_poisson_plugin::implementation::gradient_add_O6( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a 6th order finite difference gradient...");
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel);
meshvar_bnd *pvar = Du.get_grid(ilevel);
h /= 60.;
if( dir == 0 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) +=
(-(*u.get_grid(ilevel))(ix-3,iy,iz)
+9.0*(*u.get_grid(ilevel))(ix-2,iy,iz)
-45.0*(*u.get_grid(ilevel))(ix-1,iy,iz)
+45.0*(*u.get_grid(ilevel))(ix+1,iy,iz)
-9.0*(*u.get_grid(ilevel))(ix+2,iy,iz)
+(*u.get_grid(ilevel))(ix+3,iy,iz))*h;
else if( dir == 1 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) +=
(-(*u.get_grid(ilevel))(ix,iy-3,iz)
+9.0*(*u.get_grid(ilevel))(ix,iy-2,iz)
-45.0*(*u.get_grid(ilevel))(ix,iy-1,iz)
+45.0*(*u.get_grid(ilevel))(ix,iy+1,iz)
-9.0*(*u.get_grid(ilevel))(ix,iy+2,iz)
+(*u.get_grid(ilevel))(ix,iy+3,iz))*h;
else if( dir == 2 )
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
(*pvar)(ix,iy,iz) +=
(-(*u.get_grid(ilevel))(ix,iy,iz-3)
+9.0*(*u.get_grid(ilevel))(ix,iy,iz-2)
-45.0*(*u.get_grid(ilevel))(ix,iy,iz-1)
+45.0*(*u.get_grid(ilevel))(ix,iy,iz+1)
-9.0*(*u.get_grid(ilevel))(ix,iy,iz+2)
+(*u.get_grid(ilevel))(ix,iy,iz+3))*h;
}
LOGUSER("Done computing a 6th order finite difference gradient.");
}
/**************************************************************************************/
/**************************************************************************************/
#pragma mark -
#include "general.hh"
double fft_poisson_plugin::solve( grid_hierarchy& f, grid_hierarchy& u )
{
LOGUSER("Entering k-space Poisson solver...");
unsigned verbosity = cf_.getValueSafe<unsigned>("setup","verbosity",2);
if( f.levelmin() != f.levelmax() )
{
LOGERR("Attempt to run k-space Poisson solver on non unigrid mesh.");
throw std::runtime_error("fft_poisson_plugin::solve : k-space method can only be used in unigrid mode (levelmin=levelmax)");
}
if( verbosity > 0 )
{
std::cout << "-------------------------------------------------------------\n";
std::cout << " - Invoking unigrid FFT Poisson solver..." << std::endl;
}
int nx,ny,nz,nzp;
nx = f.get_grid(f.levelmax())->size(0);
ny = f.get_grid(f.levelmax())->size(1);
nz = f.get_grid(f.levelmax())->size(2);
nzp = 2*(nz/2+1);
//... copy data ..................................................
fftw_real *data = new fftw_real[(size_t)nx*(size_t)ny*(size_t)nzp];
fftw_complex *cdata = reinterpret_cast<fftw_complex*> (data);
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = (size_t)(i*ny+j)*(size_t)nzp+(size_t)k;
data[idx] = (*f.get_grid(f.levelmax()))(i,j,k);
}
//... perform FFT and Poisson solve................................
LOGUSER("Performing forward transform.");
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan
plan = fftwf_plan_dft_r2c_3d( nx, ny, nz, data, cdata, FFTW_ESTIMATE ),
iplan = fftwf_plan_dft_c2r_3d( nx, ny, nz, cdata, data, FFTW_ESTIMATE );
fftwf_execute(plan);
#else
fftw_plan
plan = fftw_plan_dft_r2c_3d( nx, ny, nz, data, cdata, FFTW_ESTIMATE ),
iplan = fftw_plan_dft_c2r_3d( nx, ny, nz, cdata, data, FFTW_ESTIMATE );
fftw_execute(plan);
#endif
#else
rfftwnd_plan
plan = rfftw3d_create_plan( nx,ny,nz,
FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE),
iplan = rfftw3d_create_plan( nx,ny,nz,
FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE|FFTW_IN_PLACE);
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), plan, data, NULL );
#else
rfftwnd_one_real_to_complex( plan, data, NULL );
#endif
#endif
double kfac = 2.0*M_PI;
double fac = -1.0/(double)((size_t)nx*(size_t)ny*(size_t)nz);
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz/2+1; ++k )
{
int ii = i; if(ii>nx/2) ii-=nx;
int jj = j; if(jj>ny/2) jj-=ny;
double ki = (double)ii;
double kj = (double)jj;
double kk = (double)k;
double kk2 = kfac*kfac*(ki*ki+kj*kj+kk*kk);
size_t idx = (size_t)(i*ny+j)*(size_t)(nzp/2)+(size_t)k;
RE(cdata[idx]) *= -1.0/kk2*fac;
IM(cdata[idx]) *= -1.0/kk2*fac;
}
RE(cdata[0]) = 0.0;
IM(cdata[0]) = 0.0;
LOGUSER("Performing backward transform.");
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute(iplan);
fftwf_destroy_plan(plan);
fftwf_destroy_plan(iplan);
#else
fftw_execute(iplan);
fftw_destroy_plan(plan);
fftw_destroy_plan(iplan);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata, NULL );
#else
rfftwnd_one_complex_to_real( iplan, cdata, NULL );
#endif
rfftwnd_destroy_plan(plan);
rfftwnd_destroy_plan(iplan);
#endif
//... copy data ..........................................
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = (size_t)(i*ny+j)*(size_t)nzp+(size_t)k;
(*u.get_grid(u.levelmax()))(i,j,k) = data[idx];
}
delete[] data;
//... set boundary values ................................
int nb = u.get_grid(u.levelmax())->m_nbnd;
for( int iy=-nb; iy<ny+nb; ++iy )
for( int iz=-nb; iz<nz+nb; ++iz )
{
int iiy( (iy+ny)%ny ), iiz( (iz+nz)%nz );
for( int i=-nb; i<0; ++i )
{
(*u.get_grid(u.levelmax()))(i,iy,iz) = (*u.get_grid(u.levelmax()))(nx+i,iiy,iiz);
(*u.get_grid(u.levelmax()))(nx-1-i,iy,iz) = (*u.get_grid(u.levelmax()))(-1-i,iiy,iiz);
}
}
for( int ix=-nb; ix<nx+nb; ++ix )
for( int iz=-nb; iz<nz+nb; ++iz )
{
int iix( (ix+nx)%nx ), iiz( (iz+nz)%nz );
for( int i=-nb; i<0; ++i )
{
(*u.get_grid(u.levelmax()))(ix,i,iz) = (*u.get_grid(u.levelmax()))(iix,ny+i,iiz);
(*u.get_grid(u.levelmax()))(ix,ny-1-i,iz) = (*u.get_grid(u.levelmax()))(iix,-1-i,iiz);
}
}
for( int ix=-nb; ix<nx+nb; ++ix )
for( int iy=-nb; iy<ny+nb; ++iy )
{
int iix( (ix+nx)%nx ), iiy( (iy+ny)%ny );
for( int i=-nb; i<0; ++i )
{
(*u.get_grid(u.levelmax()))(ix,iy,i) = (*u.get_grid(u.levelmax()))(iix,iiy,nz+i);
(*u.get_grid(u.levelmax()))(ix,iy,nz-1-i) = (*u.get_grid(u.levelmax()))(iix,iiy,-1-i);
}
}
LOGUSER("Done with k-space Poisson solver.");
return 0.0;
}
double fft_poisson_plugin::gradient( int dir, grid_hierarchy& u, grid_hierarchy& Du )
{
LOGUSER("Computing a gradient in k-space...\n");
if( u.levelmin() != u.levelmax() )
throw std::runtime_error("fft_poisson_plugin::gradient : k-space method can only be used in unigrid mode (levelmin=levelmax)");
Du = u;
int nx,ny,nz,nzp;
nx = u.get_grid(u.levelmax())->size(0);
ny = u.get_grid(u.levelmax())->size(1);
nz = u.get_grid(u.levelmax())->size(2);
nzp = 2*(nz/2+1);
//... copy data ..................................................
fftw_real *data = new fftw_real[(size_t)nx*(size_t)ny*(size_t)nzp];
fftw_complex *cdata = reinterpret_cast<fftw_complex*> (data);
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = (size_t)(i*ny+j)*(size_t)nzp+(size_t)k;
data[idx] = (*u.get_grid(u.levelmax()))(i,j,k);
}
//... perform FFT and Poisson solve................................
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan
plan = fftwf_plan_dft_r2c_3d(nx, ny, nz, data, cdata, FFTW_ESTIMATE),
iplan = fftwf_plan_dft_c2r_3d(nx, ny, nz, cdata, data, FFTW_ESTIMATE);
fftwf_execute(plan);
#else
fftw_plan
plan = fftw_plan_dft_r2c_3d(nx, ny, nz, data, cdata, FFTW_ESTIMATE),
iplan = fftw_plan_dft_c2r_3d(nx, ny, nz, cdata, data, FFTW_ESTIMATE);
fftw_execute(plan);
#endif
#else
rfftwnd_plan
plan = rfftw3d_create_plan( nx,ny,nz,
FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE),
iplan = rfftw3d_create_plan( nx,ny,nz,
FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE|FFTW_IN_PLACE);
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), plan, data, NULL );
#else
rfftwnd_one_real_to_complex( plan, data, NULL );
#endif
#endif
double fac = -1.0/(double)((size_t)nx*(size_t)ny*(size_t)nz);
double kfac = 2.0*M_PI;
bool do_glass = cf_.getValueSafe<bool>("output","glass",false);
bool deconvolve_cic = do_glass | cf_.getValueSafe<bool>("output","glass_cicdeconvolve",false);
if( deconvolve_cic )
LOGINFO("CIC deconvolution is enabled for kernel!");
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz/2+1; ++k )
{
size_t idx = (size_t)(i*ny+j)*(size_t)(nzp/2)+(size_t)k;
int ii = i; if(ii>nx/2) ii-=nx;
int jj = j; if(jj>ny/2) jj-=ny;
const double ki = (double)ii;
const double kj = (double)jj;
const double kk = (double)k;
const double kkdir[3] = {kfac*ki,kfac*kj,kfac*kk};
const double kdir = kkdir[dir];
double re = RE(cdata[idx]);
double im = IM(cdata[idx]);
RE(cdata[idx]) = fac*im*kdir;
IM(cdata[idx]) = -fac*re*kdir;
#ifdef FFTW3
if( deconvolve_cic )
{
double dfx, dfy, dfz;
dfx = M_PI*ki/(double)nx; dfx = (i!=0)? sin(dfx)/dfx : 1.0;
dfy = M_PI*kj/(double)ny; dfy = (j!=0)? sin(dfy)/dfy : 1.0;
dfz = M_PI*kk/(double)nz; dfz = (k!=0)? sin(dfz)/dfz : 1.0;
dfx = 1.0/(dfx*dfy*dfz); dfx = dfx*dfx;
cdata[idx][0] *= dfx;
cdata[idx][1] *= dfx;
}
#else
if( deconvolve_cic )
{
double dfx, dfy, dfz;
dfx = M_PI*ki/(double)nx; dfx = (i!=0)? sin(dfx)/dfx : 1.0;
dfy = M_PI*kj/(double)ny; dfy = (j!=0)? sin(dfy)/dfy : 1.0;
dfz = M_PI*kk/(double)nz; dfz = (k!=0)? sin(dfz)/dfz : 1.0;
dfx = 1.0/(dfx*dfy*dfz); dfx = dfx*dfx;
cdata[idx].re *= dfx;
cdata[idx].im *= dfx;
}
#endif
/*double ktot = sqrt(ii*ii+jj*jj+k*k);
if( ktot >= nx/2 )//dir == 0 && i==nx/2 || dir == 1 && j==ny/2 || dir == 2 && k==nz/2 )
{
cdata[idx].re = 0.0;
cdata[idx].im = 0.0;
}*/
}
RE(cdata[0]) = 0.0;
IM(cdata[0]) = 0.0;
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute(iplan);
fftwf_destroy_plan(plan);
fftwf_destroy_plan(iplan);
#else
fftw_execute(iplan);
fftw_destroy_plan(plan);
fftw_destroy_plan(iplan);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata, NULL );
#else
rfftwnd_one_complex_to_real( iplan, cdata, NULL );
#endif
rfftwnd_destroy_plan(plan);
rfftwnd_destroy_plan(iplan);
#endif
//... copy data ..........................................
double dmax = 0.0;
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = ((size_t)i*ny+(size_t)j)*nzp+(size_t)k;
(*Du.get_grid(u.levelmax()))(i,j,k) = data[idx];
if(fabs(data[idx])>dmax)
dmax = fabs(data[idx]);
}
delete[] data;
LOGUSER("Done with k-space gradient.\n");
return 0.0;
}
/**************************************************************************************/
/**************************************************************************************/
#pragma mark -
template<int order>
double poisson_hybrid_kernel( int idir, int i, int j, int k, int n )
{
return 1.0;
}
template<>
inline double poisson_hybrid_kernel<2>(int idir, int i, int j, int k, int n )
{
if(i==0&&j==0&&k==0)
return 0.0;
double
ki(M_PI*(double)i/(double)n),
kj(M_PI*(double)j/(double)n),
kk(M_PI*(double)k/(double)n),
kr(sqrt(ki*ki+kj*kj+kk*kk));
double grad = 1.0, laplace = 1.0;
if( idir==0 )
grad = sin(ki);
else if( idir==1 )
grad = sin(kj);
else
grad = sin(kk);
laplace = 2.0*((-cos(ki)+1.0)+(-cos(kj)+1.0)+(-cos(kk)+1.0));
double kgrad = 1.0;
if( idir==0 )
kgrad = ki;
else if( idir ==1)
kgrad = kj;
else if( idir ==2)
kgrad = kk;
return kgrad/kr/kr-grad/laplace;
}
template<>
inline double poisson_hybrid_kernel<4>(int idir, int i, int j, int k, int n )
{
if(i==0&&j==0&&k==0)
return 0.0;
double
ki(M_PI*(double)i/(double)n),
kj(M_PI*(double)j/(double)n),
kk(M_PI*(double)k/(double)n),
kr(sqrt(ki*ki+kj*kj+kk*kk));
double grad = 1.0, laplace = 1.0;
if( idir==0 )
grad = 0.166666666667*(-sin(2.*ki)+8.*sin(ki));
else if( idir==1 )
grad = 0.166666666667*(-sin(2.*kj)+8.*sin(kj));
else if( idir==2 )
grad = 0.166666666667*(-sin(2.*kk)+8.*sin(kk));
laplace = 0.1666666667*((cos(2*ki)-16.*cos(ki)+15.)
+(cos(2*kj)-16.*cos(kj)+15.)
+(cos(2*kk)-16.*cos(kk)+15.));
double kgrad = 1.0;
if( idir==0 )
kgrad = ki;
else if( idir ==1)
kgrad = kj;
else if( idir ==2)
kgrad = kk;
return kgrad/kr/kr-grad/laplace;
}
template<>
inline double poisson_hybrid_kernel<6>(int idir, int i, int j, int k, int n )
{
double
ki(M_PI*(double)i/(double)n),
kj(M_PI*(double)j/(double)n),
kk(M_PI*(double)k/(double)n),
kr(sqrt(ki*ki+kj*kj+kk*kk));
if(i==0&&j==0&&k==0)
return 0.0;
double grad = 1.0, laplace = 1.0;
if( idir==0 )
grad = 0.0333333333333*(sin(3.*ki)-9.*sin(2.*ki)+45.*sin(ki));
else if( idir==1 )
grad = 0.0333333333333*(sin(3.*kj)-9.*sin(2.*kj)+45.*sin(kj));
else if( idir==2 )
grad = 0.0333333333333*(sin(3.*kk)-9.*sin(2.*kk)+45.*sin(kk));
laplace = 0.01111111111111*(
(-2.*cos(3.0*ki)+27.*cos(2.*ki)-270.*cos(ki)+245.)
+(-2.*cos(3.0*kj)+27.*cos(2.*kj)-270.*cos(kj)+245.)
+(-2.*cos(3.0*kk)+27.*cos(2.*kk)-270.*cos(kk)+245.));
double kgrad = 1.0;
if( idir==0 )
kgrad = ki;
else if( idir ==1)
kgrad = kj;
else if( idir ==2)
kgrad = kk;
// if( i*i+j*j+k*k >= n*n )
// kgrad = 0.0;
return kgrad/kr/kr-grad/laplace;
}
template<int order>
void do_poisson_hybrid( fftw_real* data, int idir, int nxp, int nyp, int nzp, bool periodic, bool deconvolve_cic )
{
double fftnorm = 1.0/((double)nxp*(double)nyp*(double)nzp);
fftw_complex *cdata = reinterpret_cast<fftw_complex*>(data);
if( deconvolve_cic )
LOGINFO("CIC deconvolution step is enabled.");
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan iplan, plan;
plan = fftwf_plan_dft_r2c_3d(nxp, nyp, nzp, data, cdata, FFTW_ESTIMATE);
iplan = fftwf_plan_dft_c2r_3d(nxp, nyp, nzp, cdata, data, FFTW_ESTIMATE);
fftwf_execute(plan);
#else
fftw_plan iplan, plan;
plan = fftw_plan_dft_r2c_3d(nxp, nyp, nzp, data, cdata, FFTW_ESTIMATE);
iplan = fftw_plan_dft_c2r_3d(nxp, nyp, nzp, cdata, data, FFTW_ESTIMATE);
fftw_execute(plan);
#endif
#else
rfftwnd_plan iplan, plan;
plan = rfftw3d_create_plan( nxp, nyp, nzp,
FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE);
iplan = rfftw3d_create_plan( nxp, nyp, nzp,
FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE|FFTW_IN_PLACE);
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), plan, data, NULL );
#else
rfftwnd_one_real_to_complex( plan, data, NULL );
#endif
#endif
long double ksum = 0.0;
size_t kcount = 0;
#pragma omp parallel for reduction(+:ksum,kcount)
for( int i=0; i<nxp; ++i )
for( int j=0; j<nyp; ++j )
for( int k=0; k<nzp/2+1; ++k )
{
size_t ii = (size_t)(i*nyp + j) * (size_t)(nzp/2+1) + (size_t)k;
if( k==0 || k==nzp/2 )
{
ksum += RE(cdata[ii]);
kcount++;
}else{
ksum += 2.0*(RE(cdata[ii]));
kcount+=2;
}
}
ksum /= kcount;
kcount = 0;
#pragma omp parallel for
for( int i=0; i<nxp; ++i )
for( int j=0; j<nyp; ++j )
for( int k=0; k<nzp/2+1; ++k )
{
size_t ii = (size_t)(i*nyp + j) * (size_t)(nzp/2+1) + (size_t)k;
int ki(i), kj(j), kk(k);
if( ki > nxp/2 ) ki-=nxp;
if( kj > nyp/2 ) kj-=nyp;
//... apply hybrid correction
double dk = poisson_hybrid_kernel<order>(idir, ki, kj, k, nxp/2 );
//RE(cdata[ii]) -= ksum;
fftw_real re = RE(cdata[ii]), im = IM(cdata[ii]);
RE(cdata[ii]) = -im*dk*fftnorm;
IM(cdata[ii]) = re*dk*fftnorm;
if( deconvolve_cic )
{
double dfx, dfy, dfz;
dfx = M_PI*ki/(double)nxp; dfx = (i!=0)? sin(dfx)/dfx : 1.0;
dfy = M_PI*kj/(double)nyp; dfy = (j!=0)? sin(dfy)/dfy : 1.0;
dfz = M_PI*kk/(double)nzp; dfz = (k!=0)? sin(dfz)/dfz : 1.0;
dfx = 1.0/(dfx*dfy*dfz); dfx = dfx*dfx;
RE(cdata[ii]) *= dfx;
IM(cdata[ii]) *= dfx;
}
//RE(cdata[ii]) += ksum*fftnorm;
//if( i==nxp/2||j==nyp/2||k==nzp/2 )
//{
// RE(cdata[ii]) = 0.0;
// IM(cdata[ii]) = 0.0;
//}
}
RE(cdata[0]) = 0.0;
IM(cdata[0]) = 0.0;
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_execute(iplan);
fftwf_destroy_plan(plan);
fftwf_destroy_plan(iplan);
#else
fftw_execute(iplan);
fftw_destroy_plan(plan);
fftw_destroy_plan(iplan);
#endif
#else
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata, NULL);
#else
rfftwnd_one_complex_to_real(iplan, cdata, NULL);
#endif
rfftwnd_destroy_plan(plan);
rfftwnd_destroy_plan(iplan);
#endif
}
template< typename T >
void poisson_hybrid( T& f, int idir, int order, bool periodic, bool deconvolve_cic )
{
int nx=f.size(0), ny=f.size(1), nz=f.size(2), nxp, nyp, nzp;
fftw_real *data;
int xo=0,yo=0,zo=0;
int nmax = std::max(nx,std::max(ny,nz));
LOGUSER("Entering hybrid Poisson solver...");
if(!periodic)
{
nxp = 2*nmax;
nyp = 2*nmax;
nzp = 2*nmax;
xo = nmax/2;
yo = nmax/2;
zo = nmax/2;
}
else
{
nxp = nmax;
nyp = nmax;
nzp = nmax;
}
data = new fftw_real[(size_t)nxp*(size_t)nyp*(size_t)(nzp+2)];
if(idir==0)
std::cout << " - Performing hybrid Poisson step... (" << nxp << ", " << nyp << ", " << nzp << ")\n";
//size_t N = (size_t)nxp*(size_t)nyp*2*((size_t)nzp/2+1);
//#pragma omp parallel for
//for( size_t i=0; i<N; ++i )
// data[i]=0.0;
#pragma omp parallel for
for( int i=0; i<nxp; ++i )
for( int j=0; j<nyp; ++j )
for( int k=0; k<=nzp; ++k )
{
size_t idx = ((size_t)i*(size_t)nxp+(size_t)j)*(size_t)(nzp+2)+(size_t)k;
data[idx] = 0.0;
}
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = (size_t)((i+xo)*nyp + j+yo) * (size_t)(nzp+2) + (size_t)(k+zo);
data[idx] = f(i,j,k);
}
switch (order) {
case 2:
do_poisson_hybrid<2>(data, idir, nxp, nyp, nzp, periodic, deconvolve_cic );
break;
case 4:
do_poisson_hybrid<4>(data, idir, nxp, nyp, nzp, periodic, deconvolve_cic );
break;
case 6:
do_poisson_hybrid<6>(data, idir, nxp, nyp, nzp, periodic, deconvolve_cic );
break;
default:
std::cerr << " - ERROR: invalid operator order specified in deconvolution.";
LOGERR("Invalid operator order specified in deconvolution.");
break;
}
LOGUSER("Copying hybrid correction factor...");
#pragma omp parallel for
for( int i=0; i<nx; ++i )
for( int j=0; j<ny; ++j )
for( int k=0; k<nz; ++k )
{
size_t idx = ((size_t)(i+xo)*nyp + (size_t)(j+yo)) * (size_t)(nzp+2) + (size_t)(k+zo);
f(i,j,k) = data[idx];
}
delete[] data;
LOGUSER("Done with hybrid Poisson solve.");
}
/**************************************************************************************/
/**************************************************************************************/
#pragma mark -
template void poisson_hybrid< MeshvarBnd<double> >( MeshvarBnd<double>& f, int idir, int order, bool periodic, bool deconvolve_cic );
template void poisson_hybrid< MeshvarBnd<float> >( MeshvarBnd<float>& f, int idir, int order, bool periodic, bool deconvolve_cic );
namespace{
poisson_plugin_creator_concrete<multigrid_poisson_plugin> multigrid_poisson_creator("mg_poisson");
poisson_plugin_creator_concrete<fft_poisson_plugin> fft_poisson_creator("fft_poisson");
}