mirror of
https://github.com/glatterf42/music-panphasia.git
synced 2024-09-11 06:53:45 +02:00
1327 lines
47 KiB
C++
1327 lines
47 KiB
C++
/*
|
|
* mg_interp.hh
|
|
* FROLIC_mg
|
|
*
|
|
* Created by Oliver Hahn on 5/27/10.
|
|
* Copyright 2010 KIPAC/Stanford University. All rights reserved.
|
|
*
|
|
*/
|
|
|
|
#ifndef __MG_INTERP_HH
|
|
#define __MG_INTERP_HH
|
|
|
|
#include "mg_operators.hh"
|
|
|
|
|
|
struct coarse_fine_interpolation
|
|
{
|
|
template< class G >
|
|
void interp_coarse_fine( unsigned ilevel, G& coarse, G& fine )
|
|
{ }
|
|
};
|
|
|
|
|
|
//! general 2nd order polynomial interpolation
|
|
inline real_t interp2( real_t x1, real_t x2, real_t x3, real_t f1, real_t f2, real_t f3, real_t x )
|
|
{
|
|
real_t a,b,c;
|
|
a = (x1 * f3 - x3 * f1 - x2 * f3 - x1 * f2 + x2 * f1 + x3 * f2) / (x1 * x3 * x3 - x2 * x3 * x3 + x2 * x1 * x1 - x3 * x1 * x1 + x3 * x2 * x2 - x1 * x2 * x2);
|
|
b = -(x1 * x1 * f3 - x1 * x1 * f2 - f1 * x3 * x3 + f2 * x3 * x3 - x2 * x2 * f3 + f1 * x2 * x2) / (x1 - x2) / (x1 * x2 - x1 * x3 + x3 * x3 - x2 * x3);
|
|
c = (x1 * x1 * x2 * f3 - x1 * x1 * x3 * f2 - x2 * x2 * x1 * f3 + f2 * x1 * x3 * x3 + x2 * x2 * x3 * f1 - f1 * x2 * x3 * x3) / (x1 - x2) / (x1 * x2 - x1 * x3 + x3 * x3 - x2 * x3);
|
|
|
|
return a*x*x+b*x+c;
|
|
}
|
|
|
|
|
|
//! optimized 4th order polynomial interpolation across a left boundary for i-1 values
|
|
inline real_t interp4left( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4 )
|
|
{
|
|
//return -4.0/231.0*f0+4.0/7.0*f1+5.0/7.0*f2-1.0/3.0*f3+5./77.0*f4;
|
|
return 1.0/13.0*f0-21./55.*f1+7.0/9.0*f2+8./15.*f3-8./1287*f4;
|
|
}
|
|
|
|
//! optimized 4th order polynomial interpolation across a right boundary for i+1 values
|
|
inline real_t interp4right( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4 )
|
|
{
|
|
return interp4left(f4,f3,f2,f1,f0);
|
|
}
|
|
|
|
//! optimized 4th order polynomial interpolation across a left boundary for i-2 values
|
|
inline real_t interp4lleft( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4 )
|
|
{
|
|
//return 16./231.*f0+48.0/35.0*f1-6.0/7.0*f2-8.0/15.0*f3-9./77.*f4;
|
|
return -15./91.*f0+8./11.*f1+-10./9.*f2+32./21.*f3+32./1287.*f4;
|
|
}
|
|
|
|
//! optimized 4th order polynomial interpolation across a right boundary for i+2 values
|
|
inline real_t interp4rright( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4 )
|
|
{
|
|
return interp4lleft(f4,f3,f2,f1,f0);
|
|
}
|
|
|
|
//! general 4th order polynomial interpolation
|
|
inline real_t interp4( real_t fm2, real_t fm1, real_t f0, real_t fp1, real_t fp2, real_t x )
|
|
{
|
|
real_t x2 = x*x, x3=x2*x, x4=x3*x;
|
|
real_t a,b,c,d,e;
|
|
|
|
a= 1.0/24.0*fm2-1.0/6.0*fm1+0.25*f0-1.0/6.0*fp1+1.0/24.0*fp2;
|
|
b=-1.0/12.0*fm2+1.0/6.0*fm1-1.0/6.0*fp1+1.0/12.0*fp2;
|
|
c=-1.0/24.0*fm2+2.0/3.0*fm1-5.0/4.0*f0+2.0/3.0*fp1-1.0/24.0*fp2;
|
|
d= 1.0/12.0*fm2-2.0/3.0*fm1+2.0/3.0*fp1-1.0/12.0*fp2;
|
|
e=f0;
|
|
|
|
return a*x4+b*x3+c*x2+d*x+e;
|
|
}
|
|
|
|
//! general 4th order polynomial interpolation
|
|
inline real_t interp4( real_t* f, real_t x )
|
|
{
|
|
real_t x2 = x*x, x3=x2*x, x4=x3*x;
|
|
real_t a,b,c,d,e;
|
|
|
|
a= 1.0/24.0*f[0]-1.0/6.0*f[1]+0.25*f[2]-1.0/6.0*f[3]+1.0/24.0*f[4];
|
|
b=-1.0/12.0*f[0]+1.0/6.0*f[1]-1.0/6.0*f[3]+1.0/12.0*f[4];
|
|
c=-1.0/24.0*f[0]+2.0/3.0*f[1]-5.0/4.0*f[2]+2.0/3.0*f[3]-1.0/24.0*f[4];
|
|
d= 1.0/12.0*f[0]-2.0/3.0*f[1]+2.0/3.0*f[3]-1.0/12.0*f[4];
|
|
e=f[2];
|
|
|
|
return a*x4+b*x3+c*x2+d*x+e;
|
|
}
|
|
|
|
//! general 6th order polynomial interpolation
|
|
inline real_t interp6( real_t *f, real_t x )
|
|
{
|
|
real_t x2 = x*x, x3=x2*x, x4=x3*x, x5=x4*x, x6=x5*x;
|
|
real_t a,b,c,d,e,g,h;
|
|
|
|
a=(f[0]-6.*f[1]+15.*f[2]-20.*f[3]+15.*f[4]-6.*f[5]+f[6])/720.;
|
|
b=(-3.*f[0]+12.*f[1]-15.*f[2]+15*f[4]-12.*f[5]+3.*f[6])/720.;
|
|
c=(-5.*f[0]+60.*f[1]-195.*f[2]+280.*f[3]-195.*f[4]+60.*f[5]-5.*f[6])/720.;
|
|
d=(15.*f[0]-120.*f[1]+195.*f[2]-195.*f[4]+120.*f[5]-15.*f[6])/720.;
|
|
e=(4.*f[0]-54.*f[1]+540.*f[2]-980.*f[3]+540.*f[4]-54.*f[5]+4.*f[6])/720.;
|
|
g=(-12.*f[0]+108.*f[1]-540.*f[2]+540.*f[4]-108.*f[5]+12.*f[6])/720.;
|
|
h=f[3];
|
|
|
|
return a*x6+b*x5+c*x4+d*x3+e*x2+g*x+h;
|
|
|
|
}
|
|
|
|
//! general 6th order polynomial interpolation
|
|
inline real_t interp6( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6, real_t x )
|
|
{
|
|
real_t x2 = x*x, x3=x2*x, x4=x3*x, x5=x4*x, x6=x5*x;
|
|
real_t a,b,c,d,e,g,h;
|
|
real_t f[7]={
|
|
f0,f1,f2,f3,f4,f5,f6
|
|
};
|
|
|
|
a=(f[0]-6.*f[1]+15.*f[2]-20.*f[3]+15.*f[4]-6.*f[5]+f[6])/720.;
|
|
b=(-3.*f[0]+12.*f[1]-15.*f[2]+15*f[4]-12.*f[5]+3.*f[6])/720.;
|
|
c=(-5.*f[0]+60.*f[1]-195.*f[2]+280.*f[3]-195.*f[4]+60.*f[5]-5.*f[6])/720.;
|
|
d=(15.*f[0]-120.*f[1]+195.*f[2]-195.*f[4]+120.*f[5]-15.*f[6])/720.;
|
|
e=(4.*f[0]-54.*f[1]+540.*f[2]-980.*f[3]+540.*f[4]-54.*f[5]+4.*f[6])/720.;
|
|
g=(-12.*f[0]+108.*f[1]-540.*f[2]+540.*f[4]-108.*f[5]+12.*f[6])/720.;
|
|
h=f[3];
|
|
|
|
return a*x6+b*x5+c*x4+d*x3+e*x2+g*x+h;
|
|
|
|
}
|
|
|
|
//! general 2nd order polynomial interpolation
|
|
inline real_t interp2( real_t fleft, real_t fcenter, real_t fright, real_t x )
|
|
{
|
|
real_t a,b,c;
|
|
a = 0.5*(fleft+fright)-fcenter;
|
|
b = 0.5*(fright-fleft);
|
|
c = fcenter;
|
|
|
|
return a*x*x+b*x+c;
|
|
}
|
|
|
|
//! optimized 2nd order polynomial interpolation for i-1 values
|
|
inline real_t interp2left( real_t fleft, real_t fcenter, real_t fright )
|
|
{
|
|
real_t a,b,c;
|
|
a = (6.0*fright-10.0*fcenter+4.0*fleft)/15.0;
|
|
b = (-4.0*fleft+9.0*fright-5.0*fcenter)/15.0;
|
|
c = fcenter;
|
|
|
|
return a-b+c;
|
|
}
|
|
|
|
//! optimized 2nd order polynomial interpolation for i+1 values
|
|
inline real_t interp2right( real_t fleft, real_t fcenter, real_t fright )
|
|
{
|
|
real_t a,b,c;
|
|
a = (6.0*fleft-10.0*fcenter+4.0*fright)/15.0;
|
|
b = (4.0*fright-9.0*fleft+5.0*fcenter)/15.0;
|
|
c = fcenter;
|
|
|
|
return a+b+c;
|
|
}
|
|
|
|
//! optimized 2nd order polynomial interpolation for i-2 values
|
|
inline real_t interp2lleft( real_t fleft, real_t fcenter, real_t fright )
|
|
{
|
|
real_t a,b,c;
|
|
a = (-10.0*fcenter+4.0*fleft+6.0*fright)/15.0;
|
|
b = (-12.0*fleft+15.0*fcenter-3.0*fright)/15.0;
|
|
c = (-3.0*fright+10.0*fcenter+8.0*fleft)/15.0;
|
|
|
|
return a-b+c;
|
|
}
|
|
|
|
//! optimized 2nd order polynomial interpolation for i+2 values
|
|
inline real_t interp2rright( real_t fleft, real_t fcenter, real_t fright )
|
|
{
|
|
real_t a,b,c;
|
|
a = (-10.0*fcenter+4.0*fleft+6.0*fright)/15.0;
|
|
b = (-12.0*fleft+15.0*fcenter-3.0*fright)/15.0;
|
|
c = (-3.0*fright+10.0*fcenter+8.0*fleft)/15.0;
|
|
|
|
return a-b+c;
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i-1 values
|
|
inline real_t interp6left( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return 4./2431.*f0-24./1001.*f1+4./7.*f2+60./77.*f3-6./13.*f4+12./77.*f5-5./221.*f6;
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i-2 values
|
|
inline real_t interp6lleft( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return -12./2431.*f0+40./429.*f1+4./3.*f2-10./11.*f3+28./39.*f4-3./11.*f5+28./663.*f6;
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i-3 values
|
|
inline real_t interp6llleft( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return -36./2431.*f0+600./1001.*f1+20./21.*f2-100./77.*f3+15./13.*f4-36./77.*f5+50./663.*f6;
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i+1 values
|
|
inline real_t interp6right( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return interp6left(f6,f5,f4,f3,f2,f1,f0);
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i+2 values
|
|
inline real_t interp6rright( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return interp6lleft(f6,f5,f4,f3,f2,f1,f0);
|
|
}
|
|
|
|
//! optimized 6th order polynomial interpolation for i+3 values
|
|
inline real_t interp6rrright( real_t f0, real_t f1, real_t f2, real_t f3, real_t f4, real_t f5, real_t f6 )
|
|
{
|
|
return interp6llleft(f6,f5,f4,f3,f2,f1,f0);
|
|
}
|
|
|
|
|
|
|
|
|
|
#include "fd_schemes.hh"
|
|
|
|
//! tri-cubic interpolation for non-conservative injection
|
|
struct cubic_interp
|
|
: public coarse_fine_interpolation
|
|
{
|
|
template< class G >
|
|
void interp_coarse_fine( unsigned ilevel, G& coarse, G& fine )
|
|
{
|
|
mg_cubic().prolong_bnd( coarse, fine );
|
|
|
|
|
|
//return;
|
|
//......................................................
|
|
|
|
G *u = &fine;
|
|
G *utop = &coarse;
|
|
|
|
int
|
|
xoff = u->offset(0),
|
|
yoff = u->offset(1),
|
|
zoff = u->offset(2);
|
|
|
|
//... don't do anything if we are not an additional refinement region
|
|
if( xoff == 0 && yoff == 0 && zoff == 0 )
|
|
return;
|
|
|
|
int
|
|
nx = u->size(0),
|
|
ny = u->size(1),
|
|
nz = u->size(2);
|
|
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for( int ix=-1; ix<=nx; ++ix )
|
|
for( int iy=-1; iy<=ny; ++iy )
|
|
for( int iz=-1; iz<=nz; ++iz )
|
|
{
|
|
bool xbnd=(ix==-1||ix==nx),ybnd=(iy==-1||iy==ny),zbnd=(iz==-1||iz==nz);
|
|
|
|
//if(ix==-1||ix==nx||iy==-1||iy==ny||iz==-1||iz==nz)
|
|
if( xbnd || ybnd || zbnd )
|
|
//if( xbnd ^ ybnd ^ zbnd )
|
|
{
|
|
|
|
//... only deal with proper ghostzones
|
|
if( (xbnd&&ybnd) || (xbnd&&zbnd) || (ybnd&&zbnd) || (xbnd&&ybnd&&zbnd))
|
|
continue;
|
|
|
|
int ixtop = (int)(0.5*(real_t)(ix))+xoff;
|
|
int iytop = (int)(0.5*(real_t)(iy))+yoff;
|
|
int iztop = (int)(0.5*(real_t)(iz))+zoff;
|
|
|
|
if( ix==-1 ) ixtop=xoff-1;
|
|
if( iy==-1 ) iytop=yoff-1;
|
|
if( iz==-1 ) iztop=zoff-1;
|
|
|
|
real_t coarse_flux, fine_flux, dflux;
|
|
|
|
//real_t fac = 0.125*27.0/24.0, fac2 = -0.125*1.0/24.0;//0.125;//24.0/26.0*0.125*0.5;
|
|
real_t fac = 0.5*0.125*27.0/24.0, fac2 = -0.5*0.125*1.0/24.0;
|
|
//real_t fac = 0.125*15.0/12.0, fac2 = -0.125*1.0/12.0;
|
|
|
|
if(xbnd)
|
|
{
|
|
if( ix==-1 )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_x(-1,*utop,ixtop+1,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix,iy+j,iz+k) += fac*dflux;
|
|
(*u)(ix-1,iy+j,iz+k) += fac2*dflux;
|
|
}
|
|
//(*u)(ix,iy+j,iz+k) += 24.0/27.0*dflux;
|
|
}
|
|
else if( ix==nx )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_x(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix,iy+j,iz+k) += fac*dflux;
|
|
(*u)(ix+1,iy+j,iz+k) += fac2*dflux;
|
|
}
|
|
//(*u)(ix,iy+j,iz+k) += 24.0/27.0*dflux;
|
|
}
|
|
}
|
|
|
|
if(ybnd)
|
|
{
|
|
if( iy==-1 )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_y(-1,*utop,ixtop,iytop+1,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix+i,iy,iz+k) += fac*dflux;
|
|
(*u)(ix+i,iy-1,iz+k) += fac2*dflux;
|
|
}
|
|
}
|
|
else if( iy==ny )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix+1,iy,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_y(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix+i,iy,iz+k) += fac*dflux;
|
|
(*u)(ix+i,iy+1,iz+k) += fac2*dflux;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(zbnd)
|
|
{
|
|
if( iz==-1 )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_z(-1,*utop,ixtop,iytop,iztop+1)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
(*u)(ix+i,iy+j,iz) += fac*dflux;
|
|
(*u)(ix+i,iy+j,iz-1) += fac2*dflux;
|
|
}
|
|
}
|
|
else if( iz==nz )
|
|
{
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix+1,iy+1,iz);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_z(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
(*u)(ix+i,iy+j,iz) += fac*dflux;
|
|
(*u)(ix+i,iy+j,iz+1) += fac2*dflux;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
};
|
|
|
|
|
|
//! 3rd order flux-corrected coarse-fine interpolation
|
|
struct interp_O3_fluxcorr
|
|
: public coarse_fine_interpolation
|
|
{
|
|
template< class G >
|
|
void interp_coarse_fine( unsigned ilevel, const G& coarse, G& fine )
|
|
{
|
|
|
|
//... use cubic interpolation to get all values on boundary
|
|
mg_cubic().prolong_bnd( coarse, fine );
|
|
|
|
//... use flux corrected quadratic interpolation for the
|
|
//... the boundary overlapped by the Laplace stencil
|
|
G *u = &fine;
|
|
const G *utop = &coarse;
|
|
|
|
int
|
|
xoff = u->offset(0),
|
|
yoff = u->offset(1),
|
|
zoff = u->offset(2);
|
|
|
|
//... don't do anything if we are not an additional refinement region
|
|
if( xoff == 0 && yoff == 0 && zoff == 0 )
|
|
return;
|
|
|
|
int
|
|
nx = u->size(0),
|
|
ny = u->size(1),
|
|
nz = u->size(2);
|
|
|
|
//... set boundary condition for fine grid
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for( int ix=-1; ix<=nx; ++ix )
|
|
for( int iy=-1; iy<=ny; ++iy )
|
|
for( int iz=-1; iz<=nz; ++iz )
|
|
{
|
|
bool xbnd=(ix==-1||ix==nx),ybnd=(iy==-1||iy==ny),zbnd=(iz==-1||iz==nz);
|
|
|
|
if( xbnd || ybnd || zbnd )
|
|
{
|
|
|
|
//... only deal with proper ghostzones
|
|
if( (xbnd&&ybnd) || (xbnd&&zbnd) || (ybnd&&zbnd) || (xbnd&&ybnd&&zbnd))
|
|
continue;
|
|
|
|
int ixtop = (int)(0.5*(real_t)(ix))+xoff;
|
|
int iytop = (int)(0.5*(real_t)(iy))+yoff;
|
|
int iztop = (int)(0.5*(real_t)(iz))+zoff;
|
|
|
|
if( ix==-1 ) ixtop=xoff-1;
|
|
if( iy==-1 ) iytop=yoff-1;
|
|
if( iz==-1 ) iztop=zoff-1;
|
|
|
|
real_t ustar1, ustar2, ustar3, uhat;
|
|
real_t fac = 0.5;//0.25;
|
|
real_t flux;;
|
|
// left boundary
|
|
if( ix == -1 && iy%2==0 && iz%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop,iytop-1,iztop-1),(*utop)(ixtop,iytop,iztop-1),(*utop)(ixtop,iytop+1,iztop-1), fac*((real_t)j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop,iytop-1,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop,iytop+1,iztop), fac*((real_t)j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop,iytop-1,iztop+1),(*utop)(ixtop,iytop,iztop+1),(*utop)(ixtop,iytop+1,iztop+1), fac*((real_t)j-0.5) );
|
|
|
|
uhat = interp2( ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix,iy+j,iz+k) = interp2left( uhat, (*u)(ix+1,iy+j,iz+k), (*u)(ix+2,iy+j,iz+k) );
|
|
|
|
flux += ((*u)(ix+1,iy+j,iz+k)-(*u)(ix,iy+j,iz+k));
|
|
}
|
|
|
|
flux /= 4.0;
|
|
|
|
real_t dflux = ((*utop)(ixtop+1,iytop,iztop)-(*utop)(ixtop,iytop,iztop))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix,iy+j,iz+k) -= dflux;
|
|
}
|
|
// right boundary
|
|
if( ix == nx && iy%2==0 && iz%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop,iytop-1,iztop-1),(*utop)(ixtop,iytop,iztop-1),(*utop)(ixtop,iytop+1,iztop-1), fac*((real_t)j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop,iytop-1,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop,iytop+1,iztop), fac*((real_t)j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop,iytop-1,iztop+1),(*utop)(ixtop,iytop,iztop+1),(*utop)(ixtop,iytop+1,iztop+1), fac*((real_t)j-0.5) );
|
|
|
|
uhat = interp2( -1.0, 0.0, 1.0, ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix,iy+j,iz+k) = interp2right( (*u)(ix-2,iy+j,iz+k), (*u)(ix-1,iy+j,iz+k), uhat );
|
|
flux += ((*u)(ix,iy+j,iz+k)-(*u)(ix-1,iy+j,iz+k));
|
|
}
|
|
flux /= 4.0;
|
|
real_t dflux = ((*utop)(ixtop,iytop,iztop)-(*utop)(ixtop-1,iytop,iztop))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix,iy+j,iz+k) += dflux;
|
|
}
|
|
|
|
// bottom boundary
|
|
if( iy == -1 && ix%2==0 && iz%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop-1,iytop,iztop-1),(*utop)(ixtop,iytop,iztop-1),(*utop)(ixtop+1,iytop,iztop-1), fac*(j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop-1,iytop,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop+1,iytop,iztop), fac*(j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop-1,iytop,iztop+1),(*utop)(ixtop,iytop,iztop+1),(*utop)(ixtop+1,iytop,iztop+1), fac*(j-0.5) );
|
|
|
|
uhat = interp2( -1.0, 0.0, 1.0, ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix+j,iy,iz+k) = interp2left( uhat, (*u)(ix+j,iy+1,iz+k), (*u)(ix+j,iy+2,iz+k) );
|
|
|
|
flux += ((*u)(ix+j,iy+1,iz+k)-(*u)(ix+j,iy,iz+k));
|
|
}
|
|
flux /= 4.0;
|
|
real_t dflux = ((*utop)(ixtop,iytop+1,iztop)-(*utop)(ixtop,iytop,iztop))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix+j,iy,iz+k) -= dflux;
|
|
}
|
|
// top boundary
|
|
if( iy == ny && ix%2==0 && iz%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop-1,iytop,iztop-1),(*utop)(ixtop,iytop,iztop-1),(*utop)(ixtop+1,iytop,iztop-1), fac*(j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop-1,iytop,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop+1,iytop,iztop), fac*(j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop-1,iytop,iztop+1),(*utop)(ixtop,iytop,iztop+1),(*utop)(ixtop+1,iytop,iztop+1), fac*(j-0.5) );
|
|
|
|
uhat = interp2( -1.0, 0.0, 1.0, ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix+j,iy,iz+k) = interp2right( (*u)(ix+j,iy-2,iz+k), (*u)(ix+j,iy-1,iz+k), uhat );
|
|
|
|
flux += ((*u)(ix+j,iy,iz+k)-(*u)(ix+j,iy-1,iz+k));
|
|
}
|
|
flux /= 4.0;
|
|
real_t dflux = ((*utop)(ixtop,iytop,iztop)-(*utop)(ixtop,iytop-1,iztop))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix+j,iy,iz+k) += dflux;
|
|
}
|
|
|
|
// front boundary
|
|
if( iz == -1 && ix%2==0 && iy%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop-1,iytop-1,iztop),(*utop)(ixtop,iytop-1,iztop),(*utop)(ixtop+1,iytop-1,iztop), fac*(j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop-1,iytop,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop+1,iytop,iztop), fac*(j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop-1,iytop+1,iztop),(*utop)(ixtop,iytop+1,iztop),(*utop)(ixtop+1,iytop+1,iztop), fac*(j-0.5) );
|
|
|
|
uhat = interp2( -1.0, 0.0, 1.0, ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix+j,iy+k,iz) = interp2left( uhat, (*u)(ix+j,iy+k,iz+1), (*u)(ix+j,iy+k,iz+2) );
|
|
|
|
flux += ((*u)(ix+j,iy+k,iz+1)-(*u)(ix+j,iy+k,iz));
|
|
}
|
|
flux /= 4.0;
|
|
real_t dflux = ((*utop)(ixtop,iytop,iztop+1)-(*utop)(ixtop,iytop,iztop))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix+j,iy+k,iz) -= dflux;
|
|
}
|
|
|
|
// back boundary
|
|
if( iz == nz && ix%2==0 && iy%2==0 )
|
|
{
|
|
flux = 0.0;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
ustar1 = interp2( (*utop)(ixtop-1,iytop-1,iztop),(*utop)(ixtop,iytop-1,iztop),(*utop)(ixtop+1,iytop-1,iztop), fac*(j-0.5) );
|
|
ustar2 = interp2( (*utop)(ixtop-1,iytop,iztop),(*utop)(ixtop,iytop,iztop),(*utop)(ixtop+1,iytop,iztop), fac*(j-0.5) );
|
|
ustar3 = interp2( (*utop)(ixtop-1,iytop+1,iztop),(*utop)(ixtop,iytop+1,iztop),(*utop)(ixtop+1,iytop+1,iztop), fac*(j-0.5) );
|
|
|
|
uhat = interp2( -1.0, 0.0, 1.0, ustar1, ustar2, ustar3, fac*((real_t)k-0.5) );
|
|
|
|
(*u)(ix+j,iy+k,iz) = interp2right( (*u)(ix+j,iy+k,iz-2), (*u)(ix+j,iy+k,iz-1), uhat );
|
|
|
|
flux += ((*u)(ix+j,iy+k,iz)-(*u)(ix+j,iy+k,iz-1));
|
|
}
|
|
flux /= 4.0;
|
|
real_t dflux = ((*utop)(ixtop,iytop,iztop)-(*utop)(ixtop,iytop,iztop-1))/2.0 - flux;
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
(*u)(ix+j,iy+k,iz) += dflux;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
};
|
|
|
|
//! 5th order flux-corrected coarse-fine interpolation
|
|
struct interp_O5_fluxcorr
|
|
: public coarse_fine_interpolation
|
|
{
|
|
|
|
|
|
template< class G >
|
|
void interp_coarse_fine( unsigned ilevel, const G& coarse, G& fine )
|
|
{
|
|
|
|
//... use cubic interpolation to get all values on boundary
|
|
mg_cubic().prolong_bnd( coarse, fine );
|
|
|
|
//... use flux corrected quadratic interpolation for the
|
|
//... the boundary overlapped by the Laplace stencil
|
|
G *u = &fine;
|
|
const G *utop = &coarse;
|
|
|
|
|
|
int
|
|
xoff = u->offset(0),
|
|
yoff = u->offset(1),
|
|
zoff = u->offset(2);
|
|
|
|
//... don't do anything if we are not an additional refinement region
|
|
if( xoff == 0 && yoff == 0 && zoff == 0 )
|
|
return;
|
|
|
|
int
|
|
nx = u->size(0),
|
|
ny = u->size(1),
|
|
nz = u->size(2);
|
|
|
|
//... set boundary condition for fine grid
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for( int ix=-1; ix<=nx; ++ix )
|
|
for( int iy=-1; iy<=ny; ++iy )
|
|
for( int iz=-1; iz<=nz; ++iz )
|
|
{
|
|
bool xbnd=(ix==-1||ix==nx),ybnd=(iy==-1||iy==ny),zbnd=(iz==-1||iz==nz);
|
|
bool bnd=xbnd|ybnd|zbnd;
|
|
|
|
if( bnd )
|
|
{
|
|
|
|
int ixtop = (int)(0.5*(real_t)(ix))+xoff;
|
|
int iytop = (int)(0.5*(real_t)(iy))+yoff;
|
|
int iztop = (int)(0.5*(real_t)(iz))+zoff;
|
|
|
|
if( ix==-1 ) ixtop=xoff-1;
|
|
if( iy==-1 ) iytop=yoff-1;
|
|
if( iz==-1 ) iztop=zoff-1;
|
|
|
|
real_t ustar[5], uhat[2];
|
|
real_t fac = 0.5;
|
|
|
|
real_t coarse_flux, fine_flux, dflux;
|
|
|
|
real_t ffac = 12./14.;
|
|
|
|
// left boundary
|
|
if( ix == -1 && iy%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop+p-1,iytop-2,iztop+q), (*utop)(ixtop+p-1,iytop-1,iztop+q),
|
|
(*utop)(ixtop+p-1,iytop,iztop+q), (*utop)(ixtop+p-1,iytop+1,iztop+q),
|
|
(*utop)(ixtop+p-1,iytop+2,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5) );//-1.5 );
|
|
}
|
|
|
|
(*u)(ix,iy+j,iz+k) = interp4left( uhat[0], uhat[1], (*u)(ix+1,iy+j,iz+k),
|
|
(*u)(ix+2,iy+j,iz+k), (*u)(ix+3,iy+j,iz+k) );
|
|
(*u)(ix-1,iy+j,iz+k) = interp4lleft( uhat[0], uhat[1], (*u)(ix+1,iy+j,iz+k),
|
|
(*u)(ix+2,iy+j,iz+k), (*u)(ix+3,iy+j,iz+k) );
|
|
}
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(-1,*u,ix+1,iy+1,iz+1);
|
|
fine_flux /= 4.0;
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_x(-1,*utop,ixtop+1,iytop,iztop)/2.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix,iy+j,iz+k) += ffac*dflux;
|
|
(*u)(ix-1,iy+j,iz+k) += ffac*dflux;
|
|
}
|
|
|
|
|
|
}
|
|
// right boundary
|
|
if( ix == nx && iy%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop+p,iytop-2,iztop+q), (*utop)(ixtop+p,iytop-1,iztop+q),
|
|
(*utop)(ixtop+p,iytop,iztop+q), (*utop)(ixtop+p,iytop+1,iztop+q),
|
|
(*utop)(ixtop+p,iytop+2,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
(*u)(ix,iy+j,iz+k) = interp4right( (*u)(ix-3,iy+j,iz+k), (*u)(ix-2,iy+j,iz+k),
|
|
(*u)(ix-1,iy+j,iz+k), uhat[0], uhat[1] );
|
|
(*u)(ix+1,iy+j,iz+k) = interp4rright( (*u)(ix-3,iy+j,iz+k), (*u)(ix-2,iy+j,iz+k),
|
|
(*u)(ix-1,iy+j,iz+k), uhat[0], uhat[1] );
|
|
}
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_x(+1,*u,ix,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_x(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix,iy+j,iz+k) += ffac*dflux;
|
|
(*u)(ix+1,iy+j,iz+k) += ffac*dflux;
|
|
}
|
|
|
|
}
|
|
// bottom boundary
|
|
if( iy == -1 && ix%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop-2,iytop+p-1,iztop+q), (*utop)(ixtop-1,iytop+p-1,iztop+q),
|
|
(*utop)(ixtop,iytop+p-1,iztop+q), (*utop)(ixtop+1,iytop+p-1,iztop+q),
|
|
(*utop)(ixtop+2,iytop+p-1,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
(*u)(ix+j,iy,iz+k) = interp4left( uhat[0], uhat[1], (*u)(ix+j,iy+1,iz+k),
|
|
(*u)(ix+j,iy+2,iz+k), (*u)(ix+j,iy+3,iz+k) );
|
|
(*u)(ix+j,iy-1,iz+k) = interp4lleft( uhat[0], uhat[1], (*u)(ix+j,iy+1,iz+k),
|
|
(*u)(ix+j,iy+2,iz+k), (*u)(ix+j,iy+3,iz+k) );
|
|
}
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(-1,*u,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_y(-1,*utop,ixtop,iytop+1,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix+i,iy,iz+k) += ffac*dflux;
|
|
(*u)(ix+i,iy-1,iz+k) += ffac*dflux;
|
|
}
|
|
|
|
}
|
|
// top boundary
|
|
if( iy == ny && ix%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop-2,iytop+p,iztop+q), (*utop)(ixtop-1,iytop+p,iztop+q),
|
|
(*utop)(ixtop,iytop+p,iztop+q), (*utop)(ixtop+1,iytop+p,iztop+q),
|
|
(*utop)(ixtop+2,iytop+p,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5));//+1.5 );
|
|
}
|
|
|
|
(*u)(ix+j,iy,iz+k) = interp4right( (*u)(ix+j,iy-3,iz+k), (*u)(ix+j,iy-2,iz+k),
|
|
(*u)(ix+j,iy-1,iz+k), uhat[0], uhat[1] );
|
|
(*u)(ix+j,iy+1,iz+k) = interp4rright( (*u)(ix+j,iy-3,iz+k), (*u)(ix+j,iy-2,iz+k),
|
|
(*u)(ix+j,iy-1,iz+k), uhat[0], uhat[1] );
|
|
}
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_y(+1,*u,ix+1,iy,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_y(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
(*u)(ix+i,iy,iz+k) += ffac*dflux;
|
|
(*u)(ix+i,iy+1,iz+k) += ffac*dflux;
|
|
}
|
|
|
|
|
|
}
|
|
// front boundary
|
|
if( iz == -1 && ix%2==0 && iy%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop-2,iytop+q,iztop+p-1), (*utop)(ixtop-1,iytop+q,iztop+p-1),
|
|
(*utop)(ixtop,iytop+q,iztop+p-1), (*utop)(ixtop+1,iytop+q,iztop+p-1),
|
|
(*utop)(ixtop+2,iytop+q,iztop+p-1), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
(*u)(ix+j,iy+k,iz) = interp4left( uhat[0], uhat[1], (*u)(ix+j,iy+k,iz+1),
|
|
(*u)(ix+j,iy+k,iz+2), (*u)(ix+j,iy+k,iz+3) );
|
|
(*u)(ix+j,iy+k,iz-1) = interp4lleft( uhat[0], uhat[1], (*u)(ix+j,iy+k,iz+1),
|
|
(*u)(ix+j,iy+k,iz+2), (*u)(ix+j,iy+k,iz+3) );
|
|
}
|
|
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(-1,*u,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_z(-1,*utop,ixtop,iytop,iztop+1)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
(*u)(ix+i,iy+j,iz) += ffac*dflux;
|
|
(*u)(ix+i,iy+j,iz-1) += ffac*dflux;
|
|
}
|
|
|
|
}
|
|
// back boundary
|
|
if( iz == nz && ix%2==0 && iy%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<2; ++p )
|
|
{
|
|
for( int q=-2;q<=2;++q )
|
|
ustar[q+2] = interp4( (*utop)(ixtop-2,iytop+q,iztop+p), (*utop)(ixtop-1,iytop+q,iztop+p),
|
|
(*utop)(ixtop,iytop+q,iztop+p), (*utop)(ixtop+1,iytop+q,iztop+p),
|
|
(*utop)(ixtop+2,iytop+q,iztop+p), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp4( ustar, fac*((real_t)k-0.5));//+1.5 );
|
|
}
|
|
|
|
(*u)(ix+j,iy+k,iz) = interp4right( (*u)(ix+j,iy+k,iz-3), (*u)(ix+j,iy+k,iz-2),
|
|
(*u)(ix+j,iy+k,iz-1), uhat[0], uhat[1] );
|
|
(*u)(ix+j,iy+k,iz+1) = interp4rright((*u)(ix+j,iy+k,iz-3), (*u)(ix+j,iy+k,iz-2),
|
|
(*u)(ix+j,iy+k,iz-1), uhat[0], uhat[1] );
|
|
}
|
|
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O4<real_t>().apply_z(+1,*u,ix+1,iy+1,iz);
|
|
|
|
coarse_flux = Laplace_flux_O4<real_t>().apply_z(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
(*u)(ix+i,iy+j,iz) += ffac*dflux;
|
|
(*u)(ix+i,iy+j,iz+1) += ffac*dflux;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
//! 7th order flux-corrected coarse-fine interpolation
|
|
struct interp_O7_fluxcorr
|
|
: public coarse_fine_interpolation
|
|
{
|
|
|
|
|
|
template< class G >
|
|
void interp_coarse_fine( unsigned ilevel, const G& coarse, G& fine )
|
|
{
|
|
|
|
//... use cubic interpolation to get all values on boundary
|
|
mg_cubic().prolong_bnd( coarse, fine );
|
|
|
|
//... use flux corrected quadratic interpolation for the
|
|
//... the boundary overlapped by the Laplace stencil
|
|
G *u = &fine;
|
|
const G *utop = &coarse;
|
|
|
|
|
|
int
|
|
xoff = u->offset(0),
|
|
yoff = u->offset(1),
|
|
zoff = u->offset(2);
|
|
|
|
//... don't do anything if we are not an additional refinement region
|
|
if( xoff == 0 && yoff == 0 && zoff == 0 )
|
|
return;
|
|
|
|
int
|
|
nx = u->size(0),
|
|
ny = u->size(1),
|
|
nz = u->size(2);
|
|
|
|
G unew(*u);
|
|
|
|
//... set boundary condition for fine grid
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for( int ix=-1; ix<=nx; ++ix )
|
|
for( int iy=-1; iy<=ny; ++iy )
|
|
for( int iz=-1; iz<=nz; ++iz )
|
|
{
|
|
bool xbnd=(ix==-1||ix==nx),ybnd=(iy==-1||iy==ny),zbnd=(iz==-1||iz==nz);
|
|
bool bnd=xbnd|ybnd|zbnd;
|
|
|
|
if( bnd )
|
|
{
|
|
|
|
int ixtop = (int)(0.5*(real_t)(ix))+xoff;
|
|
int iytop = (int)(0.5*(real_t)(iy))+yoff;
|
|
int iztop = (int)(0.5*(real_t)(iz))+zoff;
|
|
|
|
if( ix==-1 ) ixtop=xoff-1;
|
|
if( iy==-1 ) iytop=yoff-1;
|
|
if( iz==-1 ) iztop=zoff-1;
|
|
|
|
real_t ustar[7], uhat[3];
|
|
real_t fac = 0.5;
|
|
|
|
real_t coarse_flux, fine_flux, dflux;
|
|
|
|
real_t ffac = 180./222.;
|
|
|
|
// left boundary
|
|
if( ix == -1 && iy%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop+p-2,iytop-3,iztop+q), (*utop)(ixtop+p-2,iytop-2,iztop+q),
|
|
(*utop)(ixtop+p-2,iytop-1,iztop+q), (*utop)(ixtop+p-2,iytop,iztop+q),
|
|
(*utop)(ixtop+p-2,iytop+1,iztop+q), (*utop)(ixtop+p-2,iytop+2,iztop+q),
|
|
(*utop)(ixtop+p-2,iytop+3,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
unew(ix,iy+j,iz+k) = interp6left( uhat[0], uhat[1], uhat[2], (*u)(ix+1,iy+j,iz+k),
|
|
(*u)(ix+2,iy+j,iz+k), (*u)(ix+3,iy+j,iz+k), (*u)(ix+4,iy+j,iz+k) );
|
|
unew(ix-1,iy+j,iz+k) = interp6lleft( uhat[0], uhat[1], uhat[2], (*u)(ix+1,iy+j,iz+k),
|
|
(*u)(ix+2,iy+j,iz+k), (*u)(ix+3,iy+j,iz+k),(*u)(ix+4,iy+j,iz+k) );
|
|
unew(ix-2,iy+j,iz+k) = interp6llleft( uhat[0], uhat[1], uhat[2], (*u)(ix+1,iy+j,iz+k),
|
|
(*u)(ix+2,iy+j,iz+k), (*u)(ix+3,iy+j,iz+k),(*u)(ix+4,iy+j,iz+k) );
|
|
}
|
|
}
|
|
// right boundary
|
|
if( ix == nx && iy%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop+p,iytop-3,iztop+q), (*utop)(ixtop+p,iytop-2,iztop+q),
|
|
(*utop)(ixtop+p,iytop-1,iztop+q), (*utop)(ixtop+p,iytop,iztop+q),
|
|
(*utop)(ixtop+p,iytop+1,iztop+q), (*utop)(ixtop+p,iytop+2,iztop+q),
|
|
(*utop)(ixtop+p,iytop+3,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5) );//-1.5 );
|
|
}
|
|
|
|
unew(ix,iy+j,iz+k) = interp6right( (*u)(ix-4,iy+j,iz+k), (*u)(ix-3,iy+j,iz+k), (*u)(ix-2,iy+j,iz+k),
|
|
(*u)(ix-1,iy+j,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+1,iy+j,iz+k) = interp6rright( (*u)(ix-4,iy+j,iz+k), (*u)(ix-3,iy+j,iz+k), (*u)(ix-2,iy+j,iz+k),
|
|
(*u)(ix-1,iy+j,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+2,iy+j,iz+k) = interp6rrright( (*u)(ix-4,iy+j,iz+k), (*u)(ix-3,iy+j,iz+k), (*u)(ix-2,iy+j,iz+k),
|
|
(*u)(ix-1,iy+j,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
|
|
|
|
}
|
|
}
|
|
// bottom boundary
|
|
if( iy == -1 && ix%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop-3,iytop+p-2,iztop+q), (*utop)(ixtop-2,iytop+p-2,iztop+q),
|
|
(*utop)(ixtop-1,iytop+p-2,iztop+q), (*utop)(ixtop,iytop+p-2,iztop+q),
|
|
(*utop)(ixtop+1,iytop+p-2,iztop+q), (*utop)(ixtop+2,iytop+p-2,iztop+q),
|
|
(*utop)(ixtop+3,iytop+p-2,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
unew(ix+j,iy,iz+k) = interp6left( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+1,iz+k),
|
|
(*u)(ix+j,iy+2,iz+k), (*u)(ix+j,iy+3,iz+k),(*u)(ix+j,iy+4,iz+k) );
|
|
unew(ix+j,iy-1,iz+k) = interp6lleft( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+1,iz+k),
|
|
(*u)(ix+j,iy+2,iz+k), (*u)(ix+j,iy+3,iz+k),(*u)(ix+j,iy+4,iz+k) );
|
|
unew(ix+j,iy-2,iz+k) = interp6llleft( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+1,iz+k),
|
|
(*u)(ix+j,iy+2,iz+k), (*u)(ix+j,iy+3,iz+k),(*u)(ix+j,iy+4,iz+k) );
|
|
|
|
}
|
|
}
|
|
// top boundary
|
|
if( iy == ny && ix%2==0 && iz%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop-3,iytop+p,iztop+q), (*utop)(ixtop-2,iytop+p,iztop+q),
|
|
(*utop)(ixtop-1,iytop+p,iztop+q), (*utop)(ixtop,iytop+p,iztop+q),
|
|
(*utop)(ixtop+1,iytop+p,iztop+q), (*utop)(ixtop+2,iytop+p,iztop+q),
|
|
(*utop)(ixtop+3,iytop+p,iztop+q), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5));//+1.5 );
|
|
}
|
|
|
|
unew(ix+j,iy,iz+k) = interp6right( (*u)(ix+j,iy-4,iz+k), (*u)(ix+j,iy-3,iz+k), (*u)(ix+j,iy-2,iz+k),
|
|
(*u)(ix+j,iy-1,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+j,iy+1,iz+k) = interp6rright( (*u)(ix+j,iy-4,iz+k), (*u)(ix+j,iy-3,iz+k), (*u)(ix+j,iy-2,iz+k),
|
|
(*u)(ix+j,iy-1,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+j,iy+2,iz+k) = interp6rrright( (*u)(ix+j,iy-4,iz+k), (*u)(ix+j,iy-3,iz+k), (*u)(ix+j,iy-2,iz+k),
|
|
(*u)(ix+j,iy-1,iz+k), uhat[0], uhat[1], uhat[2] );
|
|
|
|
}
|
|
}
|
|
// front boundary
|
|
if( iz == -1 && ix%2==0 && iy%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop-3,iytop+q,iztop+p-2), (*utop)(ixtop-2,iytop+q,iztop+p-2),
|
|
(*utop)(ixtop-1,iytop+q,iztop+p-2), (*utop)(ixtop,iytop+q,iztop+p-2),
|
|
(*utop)(ixtop+1,iytop+q,iztop+p-2), (*utop)(ixtop+2,iytop+q,iztop+p-2),
|
|
(*utop)(ixtop+3,iytop+q,iztop+p-2), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5));//-1.5 );
|
|
}
|
|
|
|
unew(ix+j,iy+k,iz) = interp6left( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+k,iz+1),
|
|
(*u)(ix+j,iy+k,iz+2), (*u)(ix+j,iy+k,iz+3),(*u)(ix+j,iy+k,iz+4) );
|
|
unew(ix+j,iy+k,iz-1) = interp6lleft( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+k,iz+1),
|
|
(*u)(ix+j,iy+k,iz+2), (*u)(ix+j,iy+k,iz+3), (*u)(ix+j,iy+k,iz+4) );
|
|
unew(ix+j,iy+k,iz-2) = interp6llleft( uhat[0], uhat[1], uhat[2], (*u)(ix+j,iy+k,iz+1),
|
|
(*u)(ix+j,iy+k,iz+2), (*u)(ix+j,iy+k,iz+3), (*u)(ix+j,iy+k,iz+4) );
|
|
}
|
|
}
|
|
// back boundary
|
|
if( iz == nz && ix%2==0 && iy%2==0 )
|
|
{
|
|
for( int j=0;j<=1;j++)
|
|
for( int k=0;k<=1;k++)
|
|
{
|
|
for( int p=0; p<3; ++p )
|
|
{
|
|
for( int q=-3;q<=3;++q )
|
|
ustar[q+3] = interp6( (*utop)(ixtop-3,iytop+q,iztop+p), (*utop)(ixtop-2,iytop+q,iztop+p),
|
|
(*utop)(ixtop-1,iytop+q,iztop+p), (*utop)(ixtop,iytop+q,iztop+p),
|
|
(*utop)(ixtop+1,iytop+q,iztop+p), (*utop)(ixtop+2,iytop+q,iztop+p),
|
|
(*utop)(ixtop+3,iytop+q,iztop+p), fac*((real_t)j-0.5) );
|
|
uhat[p] = interp6( ustar, fac*((real_t)k-0.5));//+1.5 );
|
|
}
|
|
|
|
unew(ix+j,iy+k,iz) = interp6right( (*u)(ix+j,iy+k,iz-4), (*u)(ix+j,iy+k,iz-3), (*u)(ix+j,iy+k,iz-2),
|
|
(*u)(ix+j,iy+k,iz-1), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+j,iy+k,iz+1) = interp6rright( (*u)(ix+j,iy+k,iz-4), (*u)(ix+j,iy+k,iz-3), (*u)(ix+j,iy+k,iz-2),
|
|
(*u)(ix+j,iy+k,iz-1), uhat[0], uhat[1], uhat[2] );
|
|
unew(ix+j,iy+k,iz+2) = interp6rrright( (*u)(ix+j,iy+k,iz-4), (*u)(ix+j,iy+k,iz-3), (*u)(ix+j,iy+k,iz-2),
|
|
(*u)(ix+j,iy+k,iz-1), uhat[0], uhat[1], uhat[2] );
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//... set boundary condition for fine grid
|
|
#pragma omp parallel for schedule(dynamic)
|
|
for( int ix=-1; ix<=nx; ++ix )
|
|
for( int iy=-1; iy<=ny; ++iy )
|
|
for( int iz=-1; iz<=nz; ++iz )
|
|
{
|
|
bool xbnd=(ix==-1||ix==nx),ybnd=(iy==-1||iy==ny),zbnd=(iz==-1||iz==nz);
|
|
bool bnd=xbnd|ybnd|zbnd;
|
|
|
|
if( bnd )
|
|
{
|
|
|
|
int ixtop = (int)(0.5*(real_t)(ix))+xoff;
|
|
int iytop = (int)(0.5*(real_t)(iy))+yoff;
|
|
int iztop = (int)(0.5*(real_t)(iz))+zoff;
|
|
|
|
if( ix==-1 ) ixtop=xoff-1;
|
|
if( iy==-1 ) iytop=yoff-1;
|
|
if( iz==-1 ) iztop=zoff-1;
|
|
|
|
real_t ustar[7], uhat[3];
|
|
real_t fac = 0.5;
|
|
|
|
real_t coarse_flux, fine_flux, dflux;
|
|
|
|
real_t ffac = 180./222.;
|
|
|
|
// left boundary
|
|
if( ix == -1 && iy%2==0 && iz%2==0 && !ybnd && !zbnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(-1,unew,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(-1,unew,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(-1,unew,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(-1,unew,ix+1,iy+1,iz+1);
|
|
fine_flux /= 4.0;
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_x(-1,*utop,ixtop+1,iytop,iztop)/2.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
unew(ix,iy+j,iz+k) += ffac*dflux;
|
|
unew(ix-1,iy+j,iz+k) += ffac*dflux;
|
|
unew(ix-2,iy+j,iz+k) += ffac*dflux;
|
|
}
|
|
}
|
|
// right boundary
|
|
if( ix == nx && iy%2==0 && iz%2==0 && !ybnd && !zbnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(+1,unew,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(+1,unew,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(+1,unew,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_x(+1,unew,ix,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_x(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int j=0;j<2;++j)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
unew(ix,iy+j,iz+k) += ffac*dflux;
|
|
unew(ix+1,iy+j,iz+k) += ffac*dflux;
|
|
unew(ix+2,iy+j,iz+k) += ffac*dflux;
|
|
}
|
|
}
|
|
// bottom boundary
|
|
if( iy == -1 && ix%2==0 && iz%2==0 && !xbnd && !zbnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(-1,unew,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(-1,unew,ix+1,iy+1,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(-1,unew,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(-1,unew,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_y(-1,*utop,ixtop,iytop+1,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
unew(ix+i,iy,iz+k) += ffac*dflux;
|
|
unew(ix+i,iy-1,iz+k) += ffac*dflux;
|
|
unew(ix+i,iy-2,iz+k) += ffac*dflux;
|
|
}
|
|
}
|
|
// top boundary
|
|
if( iy == ny && ix%2==0 && iz%2==0 && !xbnd && !zbnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(+1,unew,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(+1,unew,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(+1,unew,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_y(+1,unew,ix+1,iy,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_y(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int k=0;k<2;++k)
|
|
{
|
|
unew(ix+i,iy,iz+k) += ffac*dflux;
|
|
unew(ix+i,iy+1,iz+k) += ffac*dflux;
|
|
unew(ix+i,iy+2,iz+k) += ffac*dflux;
|
|
}
|
|
}
|
|
// front boundary
|
|
if( iz == -1 && ix%2==0 && iy%2==0 && !xbnd && !ybnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(-1,unew,ix,iy,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(-1,unew,ix+1,iy,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(-1,unew,ix,iy+1,iz+1);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(-1,unew,ix+1,iy+1,iz+1);
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_z(-1,*utop,ixtop,iytop,iztop+1)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
unew(ix+i,iy+j,iz) += ffac*dflux;
|
|
unew(ix+i,iy+j,iz-1) += ffac*dflux;
|
|
unew(ix+i,iy+j,iz-2) += ffac*dflux;
|
|
}
|
|
|
|
}
|
|
// back boundary
|
|
if( iz == nz && ix%2==0 && iy%2==0 && !xbnd && !ybnd)
|
|
{
|
|
fine_flux = 0.0;
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(+1,unew,ix,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(+1,unew,ix+1,iy,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(+1,unew,ix,iy+1,iz);
|
|
fine_flux += Laplace_flux_O6<real_t>().apply_z(+1,unew,ix+1,iy+1,iz);
|
|
|
|
coarse_flux = Laplace_flux_O6<real_t>().apply_z(+1,*utop,ixtop,iytop,iztop)/2.0;
|
|
fine_flux /= 4.0;
|
|
|
|
dflux = coarse_flux - fine_flux;
|
|
|
|
for(int i=0;i<2;++i)
|
|
for( int j=0;j<2;++j)
|
|
{
|
|
unew(ix+i,iy+j,iz) += ffac*dflux;
|
|
unew(ix+i,iy+j,iz+1) += ffac*dflux;
|
|
unew(ix+i,iy+j,iz+2) += ffac*dflux;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*u = unew;
|
|
}
|
|
};
|
|
|
|
|
|
#endif // __MG_INTERP_HH
|
|
|