mirror of
https://github.com/glatterf42/music-panphasia.git
synced 2024-09-11 06:53:45 +02:00
224 lines
7.1 KiB
C++
224 lines
7.1 KiB
C++
/*
|
|
|
|
cosmology.hh - This file is part of MUSIC -
|
|
a code to generate multi-scale initial conditions
|
|
for cosmological simulations
|
|
|
|
Copyright (C) 2010 Oliver Hahn
|
|
|
|
*/
|
|
|
|
#ifndef _COSMOLOGY_HH
|
|
#define _COSMOLOGY_HH
|
|
|
|
|
|
#include "transfer_function.hh"
|
|
#include "mesh.hh"
|
|
#include "general.hh"
|
|
|
|
/*!
|
|
* @class CosmoCalc
|
|
* @brief provides functions to compute cosmological quantities
|
|
*
|
|
* This class provides member functions to compute cosmological quantities
|
|
* related to the Friedmann equations and linear perturbation theory
|
|
*/
|
|
class CosmoCalc
|
|
{
|
|
public:
|
|
//! data structure to store cosmological parameters
|
|
Cosmology m_Cosmology;
|
|
|
|
//! pointer to an instance of a transfer function plugin
|
|
transfer_function_plugin *m_pTransferFunction;
|
|
|
|
|
|
//! constructor for a cosmology calculator object
|
|
/*!
|
|
* @param acosmo a cosmological parameters structure
|
|
* @param pTransferFunction pointer to an instance of a transfer function object
|
|
*/
|
|
|
|
CosmoCalc( const Cosmology acosmo, transfer_function_plugin *pTransferFunction )
|
|
{
|
|
m_Cosmology = acosmo;
|
|
m_pTransferFunction = pTransferFunction;
|
|
}
|
|
|
|
//! returns the amplitude of amplitude of the power spectrum
|
|
/*!
|
|
* @param k the wave number in h/Mpc
|
|
* @param a the expansion factor of the universe
|
|
* @returns power spectrum amplitude for wave number k at time a
|
|
*/
|
|
inline real_t Power( real_t k, real_t a ){
|
|
real_t m_Dplus = CalcGrowthFactor( a );
|
|
real_t m_DplusOne = CalcGrowthFactor( 1.0 );
|
|
real_t m_pNorm = ComputePNorm( 1e4 );
|
|
m_Dplus /= m_DplusOne;
|
|
m_DplusOne = 1.0;
|
|
real_t scale = m_Dplus/m_DplusOne;
|
|
return m_pNorm*scale*scale*TransferSq(k)*pow((double)k,(double)m_Cosmology.nspect);
|
|
}
|
|
|
|
inline static double H_of_a( double a, void *Params )
|
|
{
|
|
Cosmology *cosm = (Cosmology*)Params;
|
|
double a2 = a*a;
|
|
double Ha = sqrt(cosm->Omega_m/(a2*a) + cosm->Omega_k/a2
|
|
+ cosm->Omega_DE * pow(a,-3.*(1.+cosm->w_0+cosm->w_a)) * exp(-3.*(1.0-a)*cosm->w_a) );
|
|
return Ha;
|
|
}
|
|
|
|
inline static double Hprime_of_a( double a, void *Params )
|
|
{
|
|
Cosmology *cosm = (Cosmology*)Params;
|
|
double a2 = a*a;
|
|
double H = H_of_a( a, Params );
|
|
double Hprime = 1/(a*H) * ( -1.5 * cosm->Omega_m / (a2*a) - cosm->Omega_k / a2
|
|
- 1.5 * cosm->Omega_DE * pow( a, -3.*(1.+cosm->w_0+cosm->w_a) ) * exp( -3.*(1.0-a)*cosm->w_a )
|
|
* ( 1. + cosm->w_0 + (1.-a) * cosm->w_a ) );
|
|
return Hprime;
|
|
}
|
|
|
|
|
|
//! Integrand used by function CalcGrowthFactor to determine the linear growth factor D+
|
|
inline static double GrowthIntegrand( double a, void *Params )
|
|
{
|
|
double Ha = a * H_of_a( a, Params );
|
|
return 2.5/( Ha * Ha * Ha );
|
|
}
|
|
|
|
//! Computes the linear theory growth factor D+
|
|
/*! Function integrates over member function GrowthIntegrand and computes
|
|
* /a
|
|
* D+(a) = 5/2 H(a) * | [a'^3 * H(a')^3]^(-1) da'
|
|
* /0
|
|
*/
|
|
real_t CalcGrowthFactor( real_t a )
|
|
{
|
|
real_t integral = integrate( &GrowthIntegrand, 0.0, a, (void*)&m_Cosmology );
|
|
return H_of_a( a, (void*)&m_Cosmology ) * integral;
|
|
}
|
|
|
|
//! Compute the factor relating particle displacement and velocity
|
|
/*! Function computes
|
|
*
|
|
* vfac = a^2 * H(a) * dlogD+ / d log a = a^2 * H'(a) + 5/2 * [ a * D+(a) * H(a) ]^(-1)
|
|
*
|
|
*/
|
|
real_t CalcVFact( real_t a )
|
|
{
|
|
real_t Dp = CalcGrowthFactor( a );
|
|
real_t H = H_of_a( a, (void*)&m_Cosmology );
|
|
real_t Hp = Hprime_of_a( a, (void*)&m_Cosmology );
|
|
real_t a2 = a*a;
|
|
|
|
return ( a2 * Hp + 2.5 / ( a * Dp * H ) ) * 100.0;
|
|
}
|
|
|
|
|
|
//! Integrand for the sigma_8 normalization of the power spectrum
|
|
/*! Returns the value of the primordial power spectrum multiplied with
|
|
the transfer function and the window function of 8 Mpc/h at wave number k */
|
|
static double dSigma8( double k, void *Params )
|
|
{
|
|
if( k<=0.0 )
|
|
return 0.0f;
|
|
|
|
transfer_function *ptf = (transfer_function *)Params;
|
|
|
|
double x = k*8.0;
|
|
double w = 3.0*(sin(x)-x*cos(x))/(x*x*x);
|
|
static double nspect = (double)ptf->cosmo_.nspect;
|
|
|
|
double tf = ptf->compute(k, total);
|
|
|
|
//... no growth factor since we compute at z=0 and normalize so that D+(z=0)=1
|
|
return k*k * w*w * pow((double)k,(double)nspect) * tf*tf;
|
|
|
|
}
|
|
|
|
//! Integrand for the sigma_8 normalization of the power spectrum
|
|
/*! Returns the value of the primordial power spectrum multiplied with
|
|
the transfer function and the window function of 8 Mpc/h at wave number k */
|
|
static double dSigma8_0( double k, void *Params )
|
|
{
|
|
if( k<=0.0 )
|
|
return 0.0f;
|
|
|
|
transfer_function *ptf = (transfer_function *)Params;
|
|
|
|
double x = k*8.0;
|
|
double w = 3.0*(sin(x)-x*cos(x))/(x*x*x);
|
|
static double nspect = (double)ptf->cosmo_.nspect;
|
|
|
|
double tf = ptf->compute(k, total0);
|
|
|
|
//... no growth factor since we compute at z=0 and normalize so that D+(z=0)=1
|
|
return k*k * w*w * pow((double)k,(double)nspect) * tf*tf;
|
|
|
|
}
|
|
|
|
|
|
//! Computes the square of the transfer function
|
|
/*! Function evaluates the supplied transfer function m_pTransferFunction
|
|
* and returns the square of its value at wave number k
|
|
* @param k wave number at which to evaluate the transfer function
|
|
*/
|
|
inline real_t TransferSq( real_t k ){
|
|
//.. parameter supplied transfer function
|
|
real_t tf1 = m_pTransferFunction->compute(k, total);
|
|
return tf1*tf1;
|
|
}
|
|
|
|
|
|
//! Computes the normalization for the power spectrum
|
|
/*!
|
|
* integrates the power spectrum to fix the normalization to that given
|
|
* by the sigma_8 parameter
|
|
*/
|
|
real_t ComputePNorm( real_t kmax )
|
|
{
|
|
real_t sigma0, kmin;
|
|
kmax = m_pTransferFunction->get_kmax();//m_Cosmology.H0/8.0;
|
|
kmin = m_pTransferFunction->get_kmin();//0.0;
|
|
|
|
if( !m_pTransferFunction->tf_has_total0() )
|
|
sigma0 = 4.0 * M_PI * integrate( &dSigma8, (double)kmin, (double)kmax, (void*)m_pTransferFunction );
|
|
else
|
|
sigma0 = 4.0 * M_PI * integrate( &dSigma8_0, (double)kmin, (double)kmax, (void*)m_pTransferFunction );
|
|
|
|
return m_Cosmology.sigma8*m_Cosmology.sigma8/sigma0;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
//! compute the jeans sound speed
|
|
/*! given a density in g/cm^-3 and a mass in g it gives back the sound
|
|
* speed in cm/s for which the input mass is equal to the jeans mass
|
|
* @param rho density
|
|
* @param mass mass scale
|
|
* @returns jeans sound speed
|
|
*/
|
|
inline double jeans_sound_speed( double rho, double mass )
|
|
{
|
|
const double G = 6.67e-8;
|
|
return pow( 6.0*mass/M_PI*sqrt(rho)*pow(G,1.5), 1.0/3.0 );
|
|
}
|
|
|
|
//! computes the density from the potential using the Laplacian
|
|
void compute_Lu_density( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order=4 );
|
|
|
|
//! computes the 2nd order density perturbations using also off-diagonal terms in the potential Hessian
|
|
void compute_LLA_density( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order=4 );
|
|
|
|
//! computes the source term for the 2nd order perturbations in the displacements
|
|
void compute_2LPT_source( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order=4 );
|
|
|
|
void compute_2LPT_source_FFT( config_file& cf_, const grid_hierarchy& u, grid_hierarchy& fnew );
|
|
|
|
|
|
#endif // _COSMOLOGY_HH
|
|
|