1
0
Fork 0
mirror of https://github.com/glatterf42/music-panphasia.git synced 2024-09-11 06:53:45 +02:00
music-panphasia/cosmology.cc
2022-04-29 14:37:23 +02:00

624 lines
21 KiB
C++

/*
cosmology.cc - This file is part of MUSIC -
a code to generate multi-scale initial conditions
for cosmological simulations
Copyright (C) 2010 Oliver Hahn
*/
#include "cosmology.hh"
#include "mesh.hh"
#include "mg_operators.hh"
#include "general.hh"
#define ACC(i,j,k) ((*u.get_grid((ilevel)))((i),(j),(k)))
#define SQR(x) ((x)*(x))
#if defined(FFTW3) && defined(SINGLE_PRECISION)
#define fftw_complex fftwf_complex
#endif
void compute_LLA_density( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order )
{
fnew = u;
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel), h2 = h*h, h2_4 = 0.25*h2;
meshvar_bnd *pvar = fnew.get_grid(ilevel);
if( order == 2 )
{
#pragma omp parallel for //reduction(+:sum_corr,sum,sum2)
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
double D[3][3];
D[0][0] = (ACC(ix-1,iy,iz)-2.0*ACC(ix,iy,iz)+ACC(ix+1,iy,iz)) * h2;
D[1][1] = (ACC(ix,iy-1,iz)-2.0*ACC(ix,iy,iz)+ACC(ix,iy+1,iz)) * h2;
D[2][2] = (ACC(ix,iy,iz-1)-2.0*ACC(ix,iy,iz)+ACC(ix,iy,iz+1)) * h2;
D[0][1] = D[1][0] = (ACC(ix-1,iy-1,iz)-ACC(ix-1,iy+1,iz)-ACC(ix+1,iy-1,iz)+ACC(ix+1,iy+1,iz))*h2_4;
D[0][2] = D[2][0] = (ACC(ix-1,iy,iz-1)-ACC(ix-1,iy,iz+1)-ACC(ix+1,iy,iz-1)+ACC(ix+1,iy,iz+1))*h2_4;
D[1][2] = D[2][1] = (ACC(ix,iy-1,iz-1)-ACC(ix,iy-1,iz+1)-ACC(ix,iy+1,iz-1)+ACC(ix,iy+1,iz+1))*h2_4;
D[0][0] += 1.0;
D[1][1] += 1.0;
D[2][2] += 1.0;
double det = D[0][0]*D[1][1]*D[2][2]
- D[0][0]*D[1][2]*D[2][1]
- D[1][0]*D[0][1]*D[2][2]
+ D[1][0]*D[0][2]*D[1][2]
+ D[2][0]*D[0][1]*D[1][2]
- D[2][0]*D[0][2]*D[1][1];
(*pvar)(ix,iy,iz) = 1.0/det-1.0;
}
}
else if ( order == 4 )
{
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
double D[3][3];
D[0][0] = (-ACC(ix-2,iy,iz)+16.*ACC(ix-1,iy,iz)-30.0*ACC(ix,iy,iz)+16.*ACC(ix+1,iy,iz)-ACC(ix+2,iy,iz)) * h2/12.0;
D[1][1] = (-ACC(ix,iy-2,iz)+16.*ACC(ix,iy-1,iz)-30.0*ACC(ix,iy,iz)+16.*ACC(ix,iy+1,iz)-ACC(ix,iy+2,iz)) * h2/12.0;
D[2][2] = (-ACC(ix,iy,iz-2)+16.*ACC(ix,iy,iz-1)-30.0*ACC(ix,iy,iz)+16.*ACC(ix,iy,iz+1)-ACC(ix,iy,iz+2)) * h2/12.0;
D[0][1] = D[1][0] = (ACC(ix-1,iy-1,iz)-ACC(ix-1,iy+1,iz)-ACC(ix+1,iy-1,iz)+ACC(ix+1,iy+1,iz))*h2_4;
D[0][2] = D[2][0] = (ACC(ix-1,iy,iz-1)-ACC(ix-1,iy,iz+1)-ACC(ix+1,iy,iz-1)+ACC(ix+1,iy,iz+1))*h2_4;
D[1][2] = D[2][1] = (ACC(ix,iy-1,iz-1)-ACC(ix,iy-1,iz+1)-ACC(ix,iy+1,iz-1)+ACC(ix,iy+1,iz+1))*h2_4;
D[0][0] += 1.0;
D[1][1] += 1.0;
D[2][2] += 1.0;
double det = D[0][0]*D[1][1]*D[2][2]
- D[0][0]*D[1][2]*D[2][1]
- D[1][0]*D[0][1]*D[2][2]
+ D[1][0]*D[0][2]*D[1][2]
+ D[2][0]*D[0][1]*D[1][2]
- D[2][0]*D[0][2]*D[1][1];
(*pvar)(ix,iy,iz) = 1.0/det-1.0;
}
}
else if ( order == 6 )
{
h2_4/=36.;
h2/=180.;
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
double D[3][3];
D[0][0] = (2.*ACC(ix-3,iy,iz)-27.*ACC(ix-2,iy,iz)+270.*ACC(ix-1,iy,iz)-490.0*ACC(ix,iy,iz)+270.*ACC(ix+1,iy,iz)-27.*ACC(ix+2,iy,iz)+2.*ACC(ix+3,iy,iz)) * h2;
D[1][1] = (2.*ACC(ix,iy-3,iz)-27.*ACC(ix,iy-2,iz)+270.*ACC(ix,iy-1,iz)-490.0*ACC(ix,iy,iz)+270.*ACC(ix,iy+1,iz)-27.*ACC(ix,iy+2,iz)+2.*ACC(ix,iy+3,iz)) * h2;
D[2][2] = (2.*ACC(ix,iy,iz-3)-27.*ACC(ix,iy,iz-2)+270.*ACC(ix,iy,iz-1)-490.0*ACC(ix,iy,iz)+270.*ACC(ix,iy,iz+1)-27.*ACC(ix,iy,iz+2)+2.*ACC(ix,iy,iz+3)) * h2;
//.. this is actually 8th order accurate
D[0][1] = D[1][0] = (64.*(ACC(ix-1,iy-1,iz)-ACC(ix-1,iy+1,iz)-ACC(ix+1,iy-1,iz)+ACC(ix+1,iy+1,iz))
-8.*(ACC(ix-2,iy-1,iz)-ACC(ix+2,iy-1,iz)-ACC(ix-2,iy+1,iz)+ACC(ix+2,iy+1,iz)
+ ACC(ix-1,iy-2,iz)-ACC(ix-1,iy+2,iz)-ACC(ix+1,iy-2,iz)+ACC(ix+1,iy+2,iz))
+1.*(ACC(ix-2,iy-2,iz)-ACC(ix-2,iy+2,iz)-ACC(ix+2,iy-2,iz)+ACC(ix+2,iy+2,iz)))*h2_4;
D[0][2] = D[2][0] = (64.*(ACC(ix-1,iy,iz-1)-ACC(ix-1,iy,iz+1)-ACC(ix+1,iy,iz-1)+ACC(ix+1,iy,iz+1))
-8.*(ACC(ix-2,iy,iz-1)-ACC(ix+2,iy,iz-1)-ACC(ix-2,iy,iz+1)+ACC(ix+2,iy,iz+1)
+ ACC(ix-1,iy,iz-2)-ACC(ix-1,iy,iz+2)-ACC(ix+1,iy,iz-2)+ACC(ix+1,iy,iz+2))
+1.*(ACC(ix-2,iy,iz-2)-ACC(ix-2,iy,iz+2)-ACC(ix+2,iy,iz-2)+ACC(ix+2,iy,iz+2)))*h2_4;
D[1][2] = D[2][1] = (64.*(ACC(ix,iy-1,iz-1)-ACC(ix,iy-1,iz+1)-ACC(ix,iy+1,iz-1)+ACC(ix,iy+1,iz+1))
-8.*(ACC(ix,iy-2,iz-1)-ACC(ix,iy+2,iz-1)-ACC(ix,iy-2,iz+1)+ACC(ix,iy+2,iz+1)
+ ACC(ix,iy-1,iz-2)-ACC(ix,iy-1,iz+2)-ACC(ix,iy+1,iz-2)+ACC(ix,iy+1,iz+2))
+1.*(ACC(ix,iy-2,iz-2)-ACC(ix,iy-2,iz+2)-ACC(ix,iy+2,iz-2)+ACC(ix,iy+2,iz+2)))*h2_4;
D[0][0] += 1.0;
D[1][1] += 1.0;
D[2][2] += 1.0;
double det = D[0][0]*D[1][1]*D[2][2]
- D[0][0]*D[1][2]*D[2][1]
- D[1][0]*D[0][1]*D[2][2]
+ D[1][0]*D[0][2]*D[1][2]
+ D[2][0]*D[0][1]*D[1][2]
- D[2][0]*D[0][2]*D[1][1];
(*pvar)(ix,iy,iz) = 1.0/det-1.0;
}
}else
throw std::runtime_error("compute_LLA_density : invalid operator order specified");
}
}
void compute_Lu_density( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order )
{
fnew = u;
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel), h2 = h*h;
meshvar_bnd *pvar = fnew.get_grid(ilevel);
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
double D[3][3];
D[0][0] = 1.0 + (ACC(ix-1,iy,iz)-2.0*ACC(ix,iy,iz)+ACC(ix+1,iy,iz)) * h2;
D[1][1] = 1.0 + (ACC(ix,iy-1,iz)-2.0*ACC(ix,iy,iz)+ACC(ix,iy+1,iz)) * h2;
D[2][2] = 1.0 + (ACC(ix,iy,iz-1)-2.0*ACC(ix,iy,iz)+ACC(ix,iy,iz+1)) * h2;
(*pvar)(ix,iy,iz) = -(D[0][0]+D[1][1]+D[2][2] - 3.0);
}
}
}
#pragma mark -
void compute_2LPT_source_FFT( config_file& cf_, const grid_hierarchy& u, grid_hierarchy& fnew )
{
if( u.levelmin() != u.levelmax() )
throw std::runtime_error("FFT 2LPT can only be run in Unigrid mode!");
fnew = u;
size_t nx,ny,nz,nzp;
nx = u.get_grid(u.levelmax())->size(0);
ny = u.get_grid(u.levelmax())->size(1);
nz = u.get_grid(u.levelmax())->size(2);
nzp = 2*(nz/2+1);
//... copy data ..................................................
fftw_real *data = new fftw_real[nx*ny*nzp];
fftw_complex *cdata = reinterpret_cast<fftw_complex*> (data);
fftw_complex *cdata_11, *cdata_12, *cdata_13, *cdata_22, *cdata_23, *cdata_33;
fftw_real *data_11, *data_12, *data_13, *data_22, *data_23, *data_33;
data_11 = new fftw_real[nx*ny*nzp]; cdata_11 = reinterpret_cast<fftw_complex*> (data_11);
data_12 = new fftw_real[nx*ny*nzp]; cdata_12 = reinterpret_cast<fftw_complex*> (data_12);
data_13 = new fftw_real[nx*ny*nzp]; cdata_13 = reinterpret_cast<fftw_complex*> (data_13);
data_22 = new fftw_real[nx*ny*nzp]; cdata_22 = reinterpret_cast<fftw_complex*> (data_22);
data_23 = new fftw_real[nx*ny*nzp]; cdata_23 = reinterpret_cast<fftw_complex*> (data_23);
data_33 = new fftw_real[nx*ny*nzp]; cdata_33 = reinterpret_cast<fftw_complex*> (data_33);
#pragma omp parallel for
for( int i=0; i<(int)nx; ++i )
for( size_t j=0; j<ny; ++j )
for( size_t k=0; k<nz; ++k )
{
size_t idx = ((size_t)i*ny+j)*nzp+k;
data[idx] = (*u.get_grid(u.levelmax()))(i,j,k);
}
//... perform FFT and Poisson solve................................
#ifdef FFTW3
#ifdef SINGLE_PRECISION
fftwf_plan
plan = fftwf_plan_dft_r2c_3d(nx,ny,nz, data, cdata, FFTW_ESTIMATE),
iplan = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata, data, FFTW_ESTIMATE),
ip11 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_11, data_11, FFTW_ESTIMATE),
ip12 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_12, data_12, FFTW_ESTIMATE),
ip13 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_13, data_13, FFTW_ESTIMATE),
ip22 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_22, data_22, FFTW_ESTIMATE),
ip23 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_23, data_23, FFTW_ESTIMATE),
ip33 = fftwf_plan_dft_c2r_3d(nx,ny,nz, cdata_33, data_33, FFTW_ESTIMATE);
fftwf_execute(plan);
#else
fftw_plan
plan = fftw_plan_dft_r2c_3d(nx,ny,nz, data, cdata, FFTW_ESTIMATE),
iplan = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata, data, FFTW_ESTIMATE),
ip11 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_11, data_11, FFTW_ESTIMATE),
ip12 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_12, data_12, FFTW_ESTIMATE),
ip13 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_13, data_13, FFTW_ESTIMATE),
ip22 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_22, data_22, FFTW_ESTIMATE),
ip23 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_23, data_23, FFTW_ESTIMATE),
ip33 = fftw_plan_dft_c2r_3d(nx,ny,nz, cdata_33, data_33, FFTW_ESTIMATE);
fftw_execute(plan);
#endif
double kfac = 2.0*M_PI;
double norm = 1.0/((double)(nx*ny*nz));
#pragma omp parallel for
for( int i=0; i<(int)nx; ++i )
for( size_t j=0; j<ny; ++j )
for( size_t l=0; l<nz/2+1; ++l )
{
int ii = i; if(ii>(int)nx/2) ii-=nx;
int jj = (int)j; if(jj>(int)ny/2) jj-=ny;
double ki = (double)ii;
double kj = (double)jj;
double kk = (double)l;
double k[3];
k[0] = (double)ki * kfac;
k[1] = (double)kj * kfac;
k[2] = (double)kk * kfac;
size_t idx = ((size_t)i*ny+j)*nzp/2+l;
//double re = cdata[idx][0];
//double im = cdata[idx][1];
cdata_11[idx][0] = -k[0]*k[0] * cdata[idx][0] * norm;
cdata_11[idx][1] = -k[0]*k[0] * cdata[idx][1] * norm;
cdata_12[idx][0] = -k[0]*k[1] * cdata[idx][0] * norm;
cdata_12[idx][1] = -k[0]*k[1] * cdata[idx][1] * norm;
cdata_13[idx][0] = -k[0]*k[2] * cdata[idx][0] * norm;
cdata_13[idx][1] = -k[0]*k[2] * cdata[idx][1] * norm;
cdata_22[idx][0] = -k[1]*k[1] * cdata[idx][0] * norm;
cdata_22[idx][1] = -k[1]*k[1] * cdata[idx][1] * norm;
cdata_23[idx][0] = -k[1]*k[2] * cdata[idx][0] * norm;
cdata_23[idx][1] = -k[1]*k[2] * cdata[idx][1] * norm;
cdata_33[idx][0] = -k[2]*k[2] * cdata[idx][0] * norm;
cdata_33[idx][1] = -k[2]*k[2] * cdata[idx][1] * norm;
if( i==(int)nx/2||j==ny/2||l==nz/2)
{
cdata_11[idx][0] = 0.0;
cdata_11[idx][1] = 0.0;
cdata_12[idx][0] = 0.0;
cdata_12[idx][1] = 0.0;
cdata_13[idx][0] = 0.0;
cdata_13[idx][1] = 0.0;
cdata_22[idx][0] = 0.0;
cdata_22[idx][1] = 0.0;
cdata_23[idx][0] = 0.0;
cdata_23[idx][1] = 0.0;
cdata_33[idx][0] = 0.0;
cdata_33[idx][1] = 0.0;
}
}
delete[] data;
/*cdata_11[0][0] = 0.0; cdata_11[0][1] = 0.0;
cdata_12[0][0] = 0.0; cdata_12[0][1] = 0.0;
cdata_13[0][0] = 0.0; cdata_13[0][1] = 0.0;
cdata_22[0][0] = 0.0; cdata_22[0][1] = 0.0;
cdata_23[0][0] = 0.0; cdata_23[0][1] = 0.0;
cdata_33[0][0] = 0.0; cdata_33[0][1] = 0.0;*/
#ifdef SINGLE_PRECISION
fftwf_execute(ip11);
fftwf_execute(ip12);
fftwf_execute(ip13);
fftwf_execute(ip22);
fftwf_execute(ip23);
fftwf_execute(ip33);
fftwf_destroy_plan(plan);
fftwf_destroy_plan(iplan);
fftwf_destroy_plan(ip11);
fftwf_destroy_plan(ip12);
fftwf_destroy_plan(ip13);
fftwf_destroy_plan(ip22);
fftwf_destroy_plan(ip23);
fftwf_destroy_plan(ip33);
#else
fftw_execute(ip11);
fftw_execute(ip12);
fftw_execute(ip13);
fftw_execute(ip22);
fftw_execute(ip23);
fftw_execute(ip33);
fftw_destroy_plan(plan);
fftw_destroy_plan(iplan);
fftw_destroy_plan(ip11);
fftw_destroy_plan(ip12);
fftw_destroy_plan(ip13);
fftw_destroy_plan(ip22);
fftw_destroy_plan(ip23);
fftw_destroy_plan(ip33);
#endif
//#endif
#else
rfftwnd_plan
plan = rfftw3d_create_plan( nx,ny,nz,
FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE|FFTW_IN_PLACE),
iplan = rfftw3d_create_plan( nx,ny,nz,
FFTW_COMPLEX_TO_REAL, FFTW_ESTIMATE|FFTW_IN_PLACE);
#ifndef SINGLETHREAD_FFTW
rfftwnd_threads_one_real_to_complex( omp_get_max_threads(), plan, data, NULL );
#else
rfftwnd_one_real_to_complex( plan, data, NULL );
#endif
//#endif
//double fac = -1.0/(nx*ny*nz);
double kfac = 2.0*M_PI;
double norm = 1.0/((double)(nx*ny*nz));
#pragma omp parallel for
for( int i=0; i<(int)nx; ++i )
for( size_t j=0; j<ny; ++j )
for( size_t l=0; l<nz/2+1; ++l )
{
int ii = (int)i; if(ii>(int)(nx/2)) ii-=(int)nx;
int jj = (int)j; if(jj>(int)(ny/2)) jj-=(int)ny;
double ki = (double)ii;
double kj = (double)jj;
double kk = (double)l;
double k[3];
k[0] = (double)ki * kfac;
k[1] = (double)kj * kfac;
k[2] = (double)kk * kfac;
size_t idx = ((size_t)i*ny+j)*nzp/2+l;
//double re = cdata[idx].re;
//double im = cdata[idx].im;
cdata_11[idx].re = -k[0]*k[0] * cdata[idx].re * norm;
cdata_11[idx].im = -k[0]*k[0] * cdata[idx].im * norm;
cdata_12[idx].re = -k[0]*k[1] * cdata[idx].re * norm;
cdata_12[idx].im = -k[0]*k[1] * cdata[idx].im * norm;
cdata_13[idx].re = -k[0]*k[2] * cdata[idx].re * norm;
cdata_13[idx].im = -k[0]*k[2] * cdata[idx].im * norm;
cdata_22[idx].re = -k[1]*k[1] * cdata[idx].re * norm;
cdata_22[idx].im = -k[1]*k[1] * cdata[idx].im * norm;
cdata_23[idx].re = -k[1]*k[2] * cdata[idx].re * norm;
cdata_23[idx].im = -k[1]*k[2] * cdata[idx].im * norm;
cdata_33[idx].re = -k[2]*k[2] * cdata[idx].re * norm;
cdata_33[idx].im = -k[2]*k[2] * cdata[idx].im * norm;
if( i==(int)(nx/2)||j==ny/2||l==nz/2)
{
cdata_11[idx].re = 0.0;
cdata_11[idx].im = 0.0;
cdata_12[idx].re = 0.0;
cdata_12[idx].im = 0.0;
cdata_13[idx].re = 0.0;
cdata_13[idx].im = 0.0;
cdata_22[idx].re = 0.0;
cdata_22[idx].im = 0.0;
cdata_23[idx].re = 0.0;
cdata_23[idx].im = 0.0;
cdata_33[idx].re = 0.0;
cdata_33[idx].im = 0.0;
}
}
delete[] data;
/*cdata_11[0].re = 0.0; cdata_11[0].im = 0.0;
cdata_12[0].re = 0.0; cdata_12[0].im = 0.0;
cdata_13[0].re = 0.0; cdata_13[0].im = 0.0;
cdata_22[0].re = 0.0; cdata_22[0].im = 0.0;
cdata_23[0].re = 0.0; cdata_23[0].im = 0.0;
cdata_33[0].re = 0.0; cdata_33[0].im = 0.0;*/
#ifndef SINGLETHREAD_FFTW
//rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_11, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_12, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_13, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_22, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_23, NULL );
rfftwnd_threads_one_complex_to_real( omp_get_max_threads(), iplan, cdata_33, NULL );
#else
//rfftwnd_one_complex_to_real( iplan, cdata, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_11, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_12, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_13, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_22, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_23, NULL );
rfftwnd_one_complex_to_real(iplan, cdata_33, NULL );
#endif
rfftwnd_destroy_plan(plan);
rfftwnd_destroy_plan(iplan);
#endif
//... copy data ..........................................
#pragma omp parallel for
for( int i=0; i<(int)nx; ++i )
for( size_t j=0; j<ny; ++j )
for( size_t k=0; k<nz; ++k )
{
size_t ii = ((size_t)i*ny+j)*nzp+k;
(*fnew.get_grid(u.levelmax()))(i,j,k) = (( data_11[ii]*data_22[ii]-data_12[ii]*data_12[ii] ) +
( data_11[ii]*data_33[ii]-data_13[ii]*data_13[ii] ) +
( data_22[ii]*data_33[ii]-data_23[ii]*data_23[ii] ) );
//(*fnew.get_grid(u.levelmax()))(i,j,k) =
}
//delete[] data;
delete[] data_11;
delete[] data_12;
delete[] data_13;
delete[] data_23;
delete[] data_22;
delete[] data_33;
}
void compute_2LPT_source( const grid_hierarchy& u, grid_hierarchy& fnew, unsigned order )
{
fnew = u;
fnew.zero();
for( unsigned ilevel=u.levelmin(); ilevel<=u.levelmax(); ++ilevel )
{
double h = pow(2.0,ilevel), h2 = h*h, h2_4 = 0.25*h2;
meshvar_bnd *pvar = fnew.get_grid(ilevel);
if ( order == 2 )
{
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
double D[3][3];
D[0][0] = (ACC(ix-2,iy,iz)-2.0*ACC(ix,iy,iz)+ACC(ix+2,iy,iz)) * h2_4;
D[1][1] = (ACC(ix,iy-2,iz)-2.0*ACC(ix,iy,iz)+ACC(ix,iy+2,iz)) * h2_4;
D[2][2] = (ACC(ix,iy,iz-2)-2.0*ACC(ix,iy,iz)+ACC(ix,iy,iz+2)) * h2_4;
D[0][1] = D[1][0] = (ACC(ix-1,iy-1,iz)-ACC(ix-1,iy+1,iz)-ACC(ix+1,iy-1,iz)+ACC(ix+1,iy+1,iz))*h2_4;
D[0][2] = D[2][0] = (ACC(ix-1,iy,iz-1)-ACC(ix-1,iy,iz+1)-ACC(ix+1,iy,iz-1)+ACC(ix+1,iy,iz+1))*h2_4;
D[1][2] = D[2][1] = (ACC(ix,iy-1,iz-1)-ACC(ix,iy-1,iz+1)-ACC(ix,iy+1,iz-1)+ACC(ix,iy+1,iz+1))*h2_4;
(*pvar)(ix,iy,iz) = ( D[0][0]*D[1][1] - D[0][1]*D[0][1]
+ D[0][0]*D[2][2] - D[0][2]*D[0][2]
+ D[1][1]*D[2][2] - D[1][2]*D[1][2] );
}
}
else if ( order == 4 || order == 6 )
{
double h2_144 = h2 / 144.;
#pragma omp parallel for
for( int ix = 0; ix < (int)(*u.get_grid(ilevel)).size(0); ++ix )
for( int iy = 0; iy < (int)(*u.get_grid(ilevel)).size(1); ++iy )
for( int iz = 0; iz < (int)(*u.get_grid(ilevel)).size(2); ++iz )
{
//.. this is actually 8th order accurate
double D[3][3];
D[0][0] = ((ACC(ix-4,iy,iz)+ACC(ix+4,iy,iz))
- 16. * (ACC(ix-3,iy,iz)+ACC(ix+3,iy,iz))
+ 64. * (ACC(ix-2,iy,iz)+ACC(ix+2,iy,iz))
+ 16. * (ACC(ix-1,iy,iz)+ACC(ix+1,iy,iz))
- 130.* ACC(ix,iy,iz) ) * h2_144;
D[1][1] = ((ACC(ix,iy-4,iz)+ACC(ix,iy+4,iz))
- 16. * (ACC(ix,iy-3,iz)+ACC(ix,iy+3,iz))
+ 64. * (ACC(ix,iy-2,iz)+ACC(ix,iy+2,iz))
+ 16. * (ACC(ix,iy-1,iz)+ACC(ix,iy+1,iz))
- 130.* ACC(ix,iy,iz) ) * h2_144;
D[2][2] = ((ACC(ix,iy,iz-4)+ACC(ix,iy,iz+4))
- 16. * (ACC(ix,iy,iz-3)+ACC(ix,iy,iz+3))
+ 64. * (ACC(ix,iy,iz-2)+ACC(ix,iy,iz+2))
+ 16. * (ACC(ix,iy,iz-1)+ACC(ix,iy,iz+1))
- 130.* ACC(ix,iy,iz) ) * h2_144;
D[0][1] = D[1][0] = (64.*(ACC(ix-1,iy-1,iz)-ACC(ix-1,iy+1,iz)-ACC(ix+1,iy-1,iz)+ACC(ix+1,iy+1,iz))
-8.*(ACC(ix-2,iy-1,iz)-ACC(ix+2,iy-1,iz)-ACC(ix-2,iy+1,iz)+ACC(ix+2,iy+1,iz)
+ ACC(ix-1,iy-2,iz)-ACC(ix-1,iy+2,iz)-ACC(ix+1,iy-2,iz)+ACC(ix+1,iy+2,iz))
+1.*(ACC(ix-2,iy-2,iz)-ACC(ix-2,iy+2,iz)-ACC(ix+2,iy-2,iz)+ACC(ix+2,iy+2,iz)))*h2_144;
D[0][2] = D[2][0] = (64.*(ACC(ix-1,iy,iz-1)-ACC(ix-1,iy,iz+1)-ACC(ix+1,iy,iz-1)+ACC(ix+1,iy,iz+1))
-8.*(ACC(ix-2,iy,iz-1)-ACC(ix+2,iy,iz-1)-ACC(ix-2,iy,iz+1)+ACC(ix+2,iy,iz+1)
+ ACC(ix-1,iy,iz-2)-ACC(ix-1,iy,iz+2)-ACC(ix+1,iy,iz-2)+ACC(ix+1,iy,iz+2))
+1.*(ACC(ix-2,iy,iz-2)-ACC(ix-2,iy,iz+2)-ACC(ix+2,iy,iz-2)+ACC(ix+2,iy,iz+2)))*h2_144;
D[1][2] = D[2][1] = (64.*(ACC(ix,iy-1,iz-1)-ACC(ix,iy-1,iz+1)-ACC(ix,iy+1,iz-1)+ACC(ix,iy+1,iz+1))
-8.*(ACC(ix,iy-2,iz-1)-ACC(ix,iy+2,iz-1)-ACC(ix,iy-2,iz+1)+ACC(ix,iy+2,iz+1)
+ ACC(ix,iy-1,iz-2)-ACC(ix,iy-1,iz+2)-ACC(ix,iy+1,iz-2)+ACC(ix,iy+1,iz+2))
+1.*(ACC(ix,iy-2,iz-2)-ACC(ix,iy-2,iz+2)-ACC(ix,iy+2,iz-2)+ACC(ix,iy+2,iz+2)))*h2_144;
(*pvar)(ix,iy,iz) = ( D[0][0]*D[1][1] - SQR( D[0][1] )
+ D[0][0]*D[2][2] - SQR( D[0][2] )
+ D[1][1]*D[2][2] - SQR( D[1][2] ) );
}
}
else
throw std::runtime_error("compute_2LPT_source : invalid operator order specified");
}
//.. subtract global mean so the multi-grid poisson solver behaves well
for( int i=fnew.levelmax(); i>(int)fnew.levelmin(); --i )
mg_straight().restrict( (*fnew.get_grid(i)), (*fnew.get_grid(i-1)) );
long double sum = 0.0;
int nx,ny,nz;
nx = fnew.get_grid(fnew.levelmin())->size(0);
ny = fnew.get_grid(fnew.levelmin())->size(1);
nz = fnew.get_grid(fnew.levelmin())->size(2);
for( int ix=0; ix<nx; ++ix )
for( int iy=0; iy<ny; ++iy )
for( int iz=0; iz<nz; ++iz )
sum += (*fnew.get_grid(fnew.levelmin()))(ix,iy,iz);
sum /= (double)((size_t)nx*(size_t)ny*(size_t)nz);
for( unsigned i=fnew.levelmin(); i<=fnew.levelmax(); ++i )
{
nx = fnew.get_grid(i)->size(0);
ny = fnew.get_grid(i)->size(1);
nz = fnew.get_grid(i)->size(2);
for( int ix=0; ix<nx; ++ix )
for( int iy=0; iy<ny; ++iy )
for( int iz=0; iz<nz; ++iz )
(*fnew.get_grid(i))(ix,iy,iz) -= sum;
}
}
#undef SQR
#undef ACC