1
0
Fork 0
mirror of https://github.com/glatterf42/music-panphasia.git synced 2024-09-13 09:13:46 +02:00
music-panphasia/TransferFunction.hh
2022-04-29 14:37:23 +02:00

410 lines
9.9 KiB
C++

/*
This file is part of MUSIC -
a tool to generate initial conditions for cosmological simulations
Copyright (C) 2008-12 Oliver Hahn, ojha@gmx.de
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __TRANSFERFUNCTION_HH
#define __TRANSFERFUNCTION_HH
#include <vector>
#include <sstream>
#include <fstream>
#include <iostream>
#include <cmath>
#include <stdexcept>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_sf_gamma.h>
#include "Numerics.hh"
#include "general.hh"
#include <complex>
#define NZERO_Q
typedef std::complex<double> complex;
//! Abstract base class for transfer functions
/*!
This class implements a purely virtual interface that can be
used to derive instances implementing various transfer functions.
*/
class TransferFunction{
public:
Cosmology m_Cosmology;
public:
TransferFunction( Cosmology acosm ) : m_Cosmology( acosm ) { };
virtual double compute( double k ) = 0;
virtual ~TransferFunction(){ };
virtual double get_kmax( void ) = 0;
virtual double get_kmin( void ) = 0;
};
class TransferFunction_real
{
public:
gsl_interp_accel *accp, *accn;
gsl_spline *splinep, *splinen;
double Tr0_, Tmin_, Tmax_, Tscale_;
double rneg_, rneg2_;
static TransferFunction *ptf_;
static double nspec_;
protected:
double krgood( double mu, double q, double dlnr, double kr )
{
double krnew = kr;
complex cdgamma, zm, zp;
double arg, iarg, xm, xp, y;
gsl_sf_result g_a, g_p;
xp = 0.5*(mu+1.0+q);
xm = 0.5*(mu+1.0-q);
y = M_PI/(2.0*dlnr);
zp=complex(xp,y);
zm=complex(xm,y);
gsl_sf_lngamma_complex_e (zp.real(), zp.imag(), &g_a, &g_p);
zp=std::polar(exp(g_a.val),g_p.val);
double zpa = g_p.val;
gsl_sf_lngamma_complex_e (zm.real(), zm.imag(), &g_a, &g_p);
zm=std::polar(exp(g_a.val),g_p.val);
double zma = g_p.val;
arg=log(2.0/kr)/dlnr+(zpa+zma)/M_PI;
iarg=(double)((int)(arg + 0.5));
if( arg!=iarg )
krnew=kr*exp((arg-iarg)*dlnr);
return krnew;
}
void transform( double pnorm, double dplus, unsigned N, double q, std::vector<double>& rr, std::vector<double>& TT )
{
const double mu = 0.5;
double qmin = 1.0e-6, qmax = 1.0e+6;
q = 0.0;
N = 16384;
#ifdef NZERO_Q
//q = 0.4;
q = 0.2;
#endif
double kmin = qmin, kmax=qmax;
double rmin = qmin, rmax = qmax;
double k0 = exp(0.5*(log(kmax)+log(kmin)));
double r0 = exp(0.5*(log(rmax)+log(rmin)));
double L = log(rmax)-log(rmin);
double k0r0 = k0*r0;
double dlnk = L/N, dlnr = L/N;
double sqrtpnorm = sqrt(pnorm);
double dir = 1.0;
double fftnorm = 1.0/N;
fftw_complex in[N], out[N];
fftw_plan p,ip;
//... perform anti-ringing correction from Hamilton (2000)
k0r0 = krgood( mu, q, dlnr, k0r0 );
std::ofstream ofsk("transfer_k.txt");
double sum_in = 0.0;
for( unsigned i=0; i<N; ++i )
{
double k = k0*exp(((int)i - (int)N/2+1) * dlnk);
//double k = k0*exp(((int)i - (int)N/2) * dlnk);
//double k = k0*exp(ii * dlnk);
//... some constants missing ...//
in[i].re = dplus*sqrtpnorm*ptf_->compute( k )*pow(k,0.5*nspec_)*pow(k,1.5-q);
in[i].im = 0.0;
sum_in += in[i].re;
ofsk << std::setw(16) << k <<std::setw(16) << in[i].re << std::endl;
}
ofsk.close();
p = fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE);
ip = fftw_create_plan(N, FFTW_BACKWARD, FFTW_ESTIMATE);
//fftw_one(p, in, out);
fftw_one(p, in, out);
//... compute the Hankel transform by convolution with the Bessel function
for( unsigned i=0; i<N; ++i )
{
int ii=i;
if( ii > (int)N/2 )
ii -= N;
#ifndef NZERO_Q
double y=ii*M_PI/L;
complex zp((mu+1.0)*0.5,y);
gsl_sf_result g_a, g_p;
gsl_sf_lngamma_complex_e(zp.real(), zp.imag(), &g_a, &g_p);
double arg = 2.0*(log(2.0/k0r0)*y+g_p.val);
complex cu = complex(out[i].re,out[i].im)*std::polar(1.0,arg);
out[i].re = cu.real()*fftnorm;
out[i].im = cu.imag()*fftnorm;
#else
//complex x(dir*q, (double)ii*2.0*M_PI/L);
complex x(dir*q, (double)ii*2.0*M_PI/L);
gsl_sf_result g_a, g_p;
complex g1, g2, garg, U, phase;
complex twotox = pow(complex(2.0,0.0),x);
/////////////////////////////////////////////////////////
//.. evaluate complex Gamma functions
garg = 0.5*(mu+1.0+x);
gsl_sf_lngamma_complex_e (garg.real(), garg.imag(), &g_a, &g_p);
g1 = std::polar(exp(g_a.val),g_p.val);
garg = 0.5*(mu+1.0-x);
gsl_sf_lngamma_complex_e (garg.real(), garg.imag(), &g_a, &g_p);
g2 = std::polar(exp(g_a.val),g_p.val);
/////////////////////////////////////////////////////////
//.. compute U
if( (fabs(g2.real()) < 1e-19 && fabs(g2.imag()) < 1e-19) )
{
//std::cerr << "Warning : encountered possible singularity in TransferFunction_real::transform!\n";
g1 = 1.0; g2 = 1.0;
}
U = twotox * g1 / g2;
phase = pow(complex(k0r0,0.0),complex(0.0,2.0*M_PI*(double)ii/L));
complex cu = complex(out[i].re,out[i].im)*U*phase*fftnorm;
out[i].re = cu.real();
out[i].im = cu.imag();
if( (out[i].re != out[i].re)||(out[i].im != out[i].im) )
{ std::cerr << "NaN @ i=" << i << ", U= " << U << ", phase = " << phase << ", g1 = " << g1 << ", g2 = " << g2 << std::endl;
std::cerr << "mu+1+q = " << mu+1.0+q << std::endl;
//break;
}
#endif
}
/*out[N/2].im = 0.0;
out[N/2+1].im = 0.0;
out[N/2+1].re = out[N/2].re;
out[N/2].im = 0.0;*/
fftw_one(ip, out, in);
rr.assign(N,0.0);
TT.assign(N,0.0);
r0 = k0r0/k0;
for( unsigned i=0; i<N; ++i )
{
int ii = i;
ii -= N/2-1;
//ii -= N/2;
//if( ii>N/2)
// ii-=N;
double r = r0*exp(-ii*dlnr);
rr[N-i-1] = r;
TT[N-i-1] = 4.0*M_PI* sqrt(M_PI/2.0) * in[i].re*pow(r,-(1.5+q));
//TT[N-i-1] = 4.0*M_PI* sqrt(M_PI/2.0) * in[i].re*exp( -dir*(q+1.5)*ii*dlnr +q*log(k0r0))/r0;
//rr[i] = r;
//TT[i] = 4.0*M_PI* sqrt(M_PI/2.0) * in[i].re*pow(r,-(1.5+q));
}
{
std::ofstream ofs("transfer_real_new.txt");
for( unsigned i=0; i<N; ++i )
{
int ii = i;
ii -= N/2-1;
double r = r0*exp(-ii*dlnr);//r0*exp(ii*dlnr);
double T = 4.0*M_PI* sqrt(M_PI/2.0) * in[i].re*pow(r,-(1.5+q));
ofs << r << "\t\t" << T << "\t\t" << in[i].im << std::endl;
}
}
fftw_destroy_plan(p);
fftw_destroy_plan(ip);
}
public:
TransferFunction_real( TransferFunction *tf, double nspec, double pnorm, double dplus, double rmin, double rmax, double knymax, unsigned nr )
{
ptf_ = tf;
nspec_ = nspec;
double q = 0.8;
std::vector<double> r,T,xp,yp,xn,yn;
transform( pnorm, dplus, nr, q, r, T );
//... determine r=0 zero component by integrating up to the Nyquist frequency
gsl_integration_workspace * wp;
gsl_function F;
wp = gsl_integration_workspace_alloc(20000);
F.function = &call_wrapper;
double par[2]; par[0] = dplus*sqrt(pnorm); //par[1] = M_PI/kny;
F.params = (void*)par;
double error;
//#warning factor of sqrt(1.5) needs to be adjusted for non-equilateral boxes
//.. need a factor sqrt( 2*kny^2_x + 2*kny^2_y + 2*kny^2_z )/2 = sqrt(3/2)kny (in equilateral case)
gsl_integration_qag (&F, 0.0, sqrt(1.5)*knymax, 0, 1e-8, 20000, GSL_INTEG_GAUSS21, wp, &Tr0_, &error);
//Tr0_ = 0.0;
gsl_integration_workspace_free(wp);
for( unsigned i=0; i<r.size(); ++i )
{
// spline positive and negative part separately
/*if( T[i] > 0.0 )
{
xp.push_back( 2.0*log10(r[i]) );
yp.push_back( log10(T[i]) );
rneg_ = r[i];
rneg2_ = rneg_*rneg_;
}else {
xn.push_back( 2.0*log10(r[i]) );
yn.push_back( log10(-T[i]) );
}*/
if( r[i] > rmin && r[i] < rmax )
{
xp.push_back( 2.0*log10(r[i]) );
yp.push_back( log10(fabs(T[i])) );
xn.push_back( 2.0*log10(r[i]) );
if( T[i] >= 0.0 )
yn.push_back( 1.0 );
else
yn.push_back( -1.0 );
//ofs << std::setw(16) << xp.back() << std::setw(16) << yp.back() << std::endl;
}
}
accp = gsl_interp_accel_alloc ();
accn = gsl_interp_accel_alloc ();
//... spline interpolation is only marginally slower here
splinep = gsl_spline_alloc (gsl_interp_cspline, xp.size() );
splinen = gsl_spline_alloc (gsl_interp_cspline, xn.size() );
//... set up everything for spline interpolation
gsl_spline_init (splinep, &xp[0], &yp[0], xp.size() );
gsl_spline_init (splinen, &xn[0], &yn[0], xn.size() );
{
double dlogr = (log10(rmax)-log10(rmin))/100;
std::ofstream ofs("transfer_splinep.txt");
for( int i=0; i< 100; ++i )
{
double r = rmin*pow(10.0,i*dlogr);
ofs << std::setw(16) << r << std::setw(16) << compute_real(r*r) << std::endl;
}
}
}
static double call_wrapper( double k, void *arg )
{
double *a = (double*)arg;
return 4.0*M_PI*a[0]*ptf_->compute( k )*pow(k,0.5*nspec_)*k*k;
}
~TransferFunction_real()
{
gsl_spline_free (splinen);
gsl_interp_accel_free (accn);
gsl_spline_free (splinep);
gsl_interp_accel_free (accp);
}
inline double compute_real( double r2 ) const
{
const double EPS = 1e-8;
const double Reps2 = EPS*EPS;
if( r2 <Reps2 )
return Tr0_;
double q;
/*if( r2 < rneg2_ )
q = pow(10.0,gsl_spline_eval (splinep, log10(r2), accp));
else
q = -pow(10.0,gsl_spline_eval(splinen, log10(r2), accn));*/
double logr2 = log10(r2);
q = pow(10.0,gsl_spline_eval(splinep, logr2, accp));
double sign = 1.0;
if( gsl_spline_eval(splinen, logr2, accn) < 0.0 )
sign = -1.0;
return q*sign;
}
};
#endif