1
0
Fork 0
mirror of https://github.com/glatterf42/music-panphasia.git synced 2024-09-18 15:03:45 +02:00

Singlepresicion compiling again, swift output added.

This commit is contained in:
glatterf42 2022-04-29 14:43:12 +02:00
parent 1e32e12349
commit eb05197bb5
10 changed files with 836 additions and 7 deletions

8
.gitignore vendored Normal file
View file

@ -0,0 +1,8 @@
*.conf
.vscode/
MUSIC
*.o
*.patch
test/
Eagle_camb_file_wide
*.txt

View file

@ -11,16 +11,17 @@ BOXLIB_HOME = ${HOME}/nyx_tot_sterben/BoxLib
##############################################################################
### compiler and path settings
CC = g++-11 ## icpc
FF = gfortran-11 # needed only for panphasia, or ## ifort
CC = g++ ## icpc
FF = gfortran-11# needed only for panphasia, or ## ifort
LINKER = g++-11 ## ifort # need to link with ifort if using intel
OPT = -Wall -Wno-unknown-pragmas -O3 -mtune=native #-fsanitize=address -fno-omit-frame-pointer
CFLAGS =
LFLAGS = -lgsl -lgslcblas -fsanitize=thread # -fsanitize=address -fno-omit-frame-pointer
LFLAGS = -lgsl -lgslcblas #-fsanitize=thread #-fsanitize=address -fno-omit-frame-pointer
FFLAGS = -ffixed-line-length-132 -O3 -fimplicit-none -g #-fsanitize=address -fno-omit-frame-pointer## use for gfortran
#FFLAGS = -extend_source -O3 -fimplicit-none -g ## use for ifort
CPATHS = -I. -I$(HOME)/local/include -I/opt/local/include -I/usr/local/include
LPATHS = -L$(HOME)/local/lib -L/opt/local/lib -L/usr/local/lib
CPATHS = -I. -I$(HOME)/local/include -I/opt/local/include -I/usr/local/include -I/usr/include/hdf5/serial
LPATHS = -L$(HOME)/local/lib -L/opt/local/lib -L/usr/local/lib -L/usr/lib/x86_64-linux-gnu/hdf5/serial
##############################################################################
# if you have FFTW 2.1.5 or 3.x with multi-thread support, you can enable the

View file

@ -109,7 +109,11 @@ template <typename m1, typename m2> void fft_coarsen(m1 &v, m2 &V) {
std::complex<real_t> val_phas(cos(phase), sin(phase));
#ifdef SINGLE_PRECISION
val_fine *= val_phas * fftnorm / 8.0f; // sqrt(8.0);
#else
val_fine *= val_phas * fftnorm / 8.0; // sqrt(8.0);
#endif
RE(ccoarse[qc]) = val_fine.real();
IM(ccoarse[qc]) = val_fine.imag();

Binary file not shown.

View file

@ -714,6 +714,7 @@ public:
HDFWriteGroupAttribute(filename, "Header", "suggested_gridboost", gridboost);
HDFWriteGroupAttribute(filename, "Header", "suggested_highressoft", softening);
HDFWriteGroupAttribute(filename, "Header", "suggested_gas_Tinit", Tini);
HDFWriteGroupAttribute(filename, "Header", "Flag_Entropy_ICs", 0);
}
// give config/parameter file hints

815
plugins/output_swift.cc Normal file
View file

@ -0,0 +1,815 @@
/*
* output_arepo.cc - This file is part of MUSIC -
* a code to generate multi-scale initial conditions
* for cosmological simulations
*
* Copyright (C) 2010 Oliver Hahn
*
* Plugin: Dylan Nelson (dnelson@cfa.harvard.edu)
*/
#ifdef HAVE_HDF5
#define GAS_PARTTYPE 0
#define HIGHRES_DM_PARTTYPE 1
#define COARSE_DM_DEFAULT_PARTTYPE 2
#define STAR_PARTTYPE 4
#define NTYPES 6
#include "HDF_IO.hh"
#include "output.hh"
#include <algorithm>
#include <sstream>
#include <string>
class swift_output_plugin : public output_plugin {
protected:
// header/config
std::vector<std::vector<unsigned int>> nPart;
std::vector<long long> nPartTotal;
std::vector<double> massTable;
double time, redshift, boxSize;
unsigned int numFiles, coarsePartType;
double omega0, omega_L, hubbleParam;
// configuration
double UnitLength_in_cm, UnitMass_in_g, UnitVelocity_in_cm_per_s;
double omega_b, rhoCrit;
double posFac, velFac;
long long nPartTotAllTypes;
bool doBaryons, useLongIDs, doublePrec;
size_t npfine, npart, npcoarse;
std::vector<size_t> levelcounts;
// parameter file hints
int pmgrid, gridboost;
float softening, Tini;
using output_plugin::cf_;
// Nx1 vector (e.g. masses,particleids)
template <typename T> void writeHDF5_a(std::string fieldName, int partTypeNum, const std::vector<T> &data) {
hid_t HDF_FileID, HDF_GroupID, HDF_DatasetID, HDF_DataspaceID, HDF_Type;
hsize_t HDF_Dims, offset = 0;
std::stringstream GrpName;
GrpName << "PartType" << partTypeNum;
for (unsigned i = 0; i < numFiles; i++) {
std::string filename = fname_;
HDF_Dims = data.size();
// modify local filename and write size
if (numFiles > 1) {
std::stringstream s;
s << "." << i << ".hdf5";
filename.replace(filename.find(".hdf5"), 5, s.str());
HDF_Dims = ceil(data.size() / numFiles);
if (i == numFiles - 1)
HDF_Dims = data.size() - offset;
}
HDF_FileID = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
HDF_GroupID = H5Gopen(HDF_FileID, GrpName.str().c_str());
HDF_Type = GetDataType<T>();
HDF_DataspaceID = H5Screate_simple(1, &HDF_Dims, NULL);
HDF_DatasetID = H5Dcreate(HDF_GroupID, fieldName.c_str(), HDF_Type, HDF_DataspaceID, H5P_DEFAULT);
// write and close
H5Dwrite(HDF_DatasetID, HDF_Type, H5S_ALL, H5S_ALL, H5P_DEFAULT, &data[offset]);
H5Dclose(HDF_DatasetID);
H5Sclose(HDF_DataspaceID);
H5Gclose(HDF_GroupID);
H5Fclose(HDF_FileID);
offset += HDF_Dims;
}
}
// Nx3 vector (e.g. pos,vel), where coord = index of the second dimension (written one at a time)
template <typename T>
void writeHDF5_b(std::string fieldName, int coord, int partTypeNum, std::vector<T> &data, bool readFlag = false) {
hid_t HDF_FileID, HDF_GroupID, HDF_DatasetID, HDF_DataspaceID, HDF_Type;
hsize_t HDF_Dims[2], HDF_DimsMem[2], w_offset = 0;
std::stringstream GrpName;
GrpName << "PartType" << partTypeNum;
for (unsigned i = 0; i < numFiles; i++) {
std::string filename = fname_;
HDF_Dims[0] = data.size();
// modify local filename and write size
if (numFiles > 1) {
std::stringstream s;
s << "." << i << ".hdf5";
filename.replace(filename.find(".hdf5"), 5, s.str());
HDF_Dims[0] = ceil(data.size() / numFiles);
if (i == numFiles - 1)
HDF_Dims[0] = data.size() - w_offset;
}
HDF_FileID = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
HDF_GroupID = H5Gopen(HDF_FileID, GrpName.str().c_str());
HDF_Type = GetDataType<T>();
HDF_Dims[1] = 3;
// if dataset does not yet exist, create it (on first coord call)
if (!(H5Lexists(HDF_GroupID, fieldName.c_str(), H5P_DEFAULT))) {
HDF_DataspaceID = H5Screate_simple(2, HDF_Dims, NULL);
HDF_DatasetID = H5Dcreate(HDF_GroupID, fieldName.c_str(), HDF_Type, HDF_DataspaceID, H5P_DEFAULT);
H5Sclose(HDF_DataspaceID);
H5Dclose(HDF_DatasetID);
}
// make memory space (just indicates the size/shape of data)
HDF_DimsMem[0] = HDF_Dims[0];
HDF_DimsMem[1] = 1;
hid_t HDF_MemoryspaceID = H5Screate_simple(2, HDF_DimsMem, NULL);
// open hyperslab
hsize_t count[2] = {1, 1}, stride[2] = {1, 1}, offset[2] = {0, 0};
offset[1] = coord; // set where in the second dimension to write
count[0] = HDF_Dims[0]; // set size in the first dimension (num particles of this type)
HDF_DatasetID = H5Dopen(HDF_GroupID, fieldName.c_str());
HDF_DataspaceID = H5Dget_space(HDF_DatasetID);
H5Sselect_hyperslab(HDF_DataspaceID, H5S_SELECT_SET, offset, stride, count, NULL);
// write (or read) and close
if (readFlag)
H5Dread(HDF_DatasetID, HDF_Type, HDF_MemoryspaceID, HDF_DataspaceID, H5P_DEFAULT, &data[w_offset]);
else
H5Dwrite(HDF_DatasetID, HDF_Type, HDF_MemoryspaceID, HDF_DataspaceID, H5P_DEFAULT, &data[w_offset]);
H5Dclose(HDF_DatasetID);
H5Gclose(HDF_GroupID);
H5Fclose(HDF_FileID);
w_offset += HDF_Dims[0];
}
}
// called from finalize()
void generateAndWriteIDs(void) {
long long offset = 1; // don't use ID==0
nPartTotAllTypes = 0;
for (size_t i = 0; i < nPartTotal.size(); i++) {
if (!nPartTotal[i])
continue;
nPartTotAllTypes += nPartTotal[i];
if (!useLongIDs) {
std::vector<int> ids = std::vector<int>(nPartTotal[i]);
for (int j = 0; j < nPartTotal[i]; j++)
ids[j] = offset + j;
writeHDF5_a("ParticleIDs", i, ids);
} else {
std::vector<long long> ids = std::vector<long long>(nPartTotal[i]);
for (long long j = 0; j < nPartTotal[i]; j++)
ids[j] = offset + j;
writeHDF5_a("ParticleIDs", i, ids);
}
// make IDs of all particle types sequential (unique) = unnecessary, but consistent with gadget output format
offset += nPartTotal[i];
}
}
void countLeafCells(const grid_hierarchy &gh) {
npfine = 0;
npart = 0;
npcoarse = 0;
npfine = gh.count_leaf_cells(gh.levelmax(), gh.levelmax());
npart = gh.count_leaf_cells(gh.levelmin(), gh.levelmax());
if (levelmax_ != levelmin_) // multimass
npcoarse = gh.count_leaf_cells(gh.levelmin(), gh.levelmax() - 1);
}
template <typename T> void __write_dm_mass(const grid_hierarchy &gh) {
countLeafCells(gh);
// FINE: collect velocities and convert to correct units
int ilevel = gh.levelmax();
std::vector<T> data(npfine);
size_t count = 0;
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
if (!doBaryons)
data[count++] = omega0 * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmax_);
else
data[count++] = (omega0 - omega_b) * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmax_);
}
writeHDF5_a("Masses", HIGHRES_DM_PARTTYPE, data); // write fine DM
if (count != npfine)
throw std::runtime_error("Internal consistency error while writing fine DM masses");
// fill levelcount for header
levelcounts = std::vector<size_t>(levelmax_ - levelmin_ + 1);
for (int ilevel = gh.levelmax(); ilevel >= (int)gh.levelmin(); --ilevel)
levelcounts[gh.levelmax() - ilevel] = gh.count_leaf_cells(ilevel, ilevel);
if (levelmax_ > levelmin_ + 1) // morethan2bnd
{
// DM particles will have variable masses
size_t count = 0;
std::vector<T> data(npcoarse);
for (int ilevel = gh.levelmax() - 1; ilevel >= (int)gh.levelmin(); --ilevel) {
// baryon particles live only on finest grid, these particles here are total matter particles
T pmass = omega0 * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * ilevel);
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
data[count++] = pmass;
}
}
if (count != npcoarse)
throw std::runtime_error("Internal consistency error while writing masses");
writeHDF5_a("Masses", coarsePartType, data); // write DM
} else {
// DM particles will all have the same mass, just write to massTable
if (levelmax_ != levelmin_) // multimass
massTable[coarsePartType] = omega0 * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmin_);
}
}
template <typename T> void __write_dm_position(int coord, const grid_hierarchy &gh) {
countLeafCells(gh);
// update header
hsize_t offset_fine = 0, offset_coarse = 0;
for (unsigned i = 0; i < numFiles; i++) {
hsize_t dims_fine = ceil(npfine / numFiles);
hsize_t dims_coarse = ceil(npcoarse / numFiles);
if (i == numFiles - 1) {
dims_fine = npfine - offset_fine;
dims_coarse = npcoarse - offset_coarse;
}
nPart[i][HIGHRES_DM_PARTTYPE] = dims_fine;
nPart[i][coarsePartType] = dims_coarse;
offset_fine += dims_fine;
offset_coarse += dims_coarse;
}
nPartTotal[HIGHRES_DM_PARTTYPE] = npfine;
nPartTotal[coarsePartType] = npcoarse;
// FINE: collect displacements and convert to absolute coordinates with correct units
int ilevel = gh.levelmax();
std::vector<T> data(npfine);
size_t count = 0;
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
double xx[3];
gh.cell_pos(ilevel, i, j, k, xx);
xx[coord] = (xx[coord] + (*gh.get_grid(ilevel))(i, j, k)) * boxSize;
xx[coord] = fmod(xx[coord] + boxSize, boxSize); //added fmod here (see below), otherwise only takes latter value
data[count++] = (T)(xx[coord] * posFac);
}
writeHDF5_b("Coordinates", coord, HIGHRES_DM_PARTTYPE, data); // write fine DM
if (count != npfine)
throw std::runtime_error("Internal consistency error while writing fine DM pos");
// COARSE: collect displacements and convert to absolute coordinates with correct units
if (levelmax_ != levelmin_) // multimass
{
data = std::vector<T>(npcoarse, 0.0);
count = 0;
for (int ilevel = gh.levelmax() - 1; ilevel >= (int)gh.levelmin(); --ilevel)
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
double xx[3];
gh.cell_pos(ilevel, i, j, k, xx);
xx[coord] = (xx[coord] + (*gh.get_grid(ilevel))(i, j, k)) * boxSize;
if (!doBaryons) // if so, we will handle the mod in write_gas_position
xx[coord] = fmod(xx[coord] + boxSize, boxSize) * posFac;
data[count++] = (T)xx[coord];
}
if (count != npcoarse)
throw std::runtime_error("Internal consistency error while writing coarse DM pos");
writeHDF5_b("Coordinates", coord, coarsePartType, data); // write coarse DM
}
}
template <typename T> void __write_dm_velocity(int coord, const grid_hierarchy &gh) {
countLeafCells(gh);
// FINE: collect velocities and convert to correct units
int ilevel = gh.levelmax();
std::vector<T> data(npfine);
size_t count = 0;
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
data[count++] = (T)(*gh.get_grid(ilevel))(i, j, k) * velFac;
}
writeHDF5_b("Velocities", coord, HIGHRES_DM_PARTTYPE, data); // write fine DM
if (count != npfine)
throw std::runtime_error("Internal consistency error while writing fine DM pos");
// COARSE: collect velocities and convert to correct units
if (levelmax_ != levelmin_) // multimass
{
data = std::vector<T>(npcoarse, 0.0);
count = 0;
for (int ilevel = gh.levelmax() - 1; ilevel >= (int)gh.levelmin(); --ilevel)
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
data[count++] = (T)(*gh.get_grid(ilevel))(i, j, k) * velFac;
}
if (count != npcoarse)
throw std::runtime_error("Internal consistency error while writing coarse DM pos");
writeHDF5_b("Velocities", coord, coarsePartType, data); // write coarse DM
}
}
template <typename T> void __write_gas_velocity(int coord, const grid_hierarchy &gh) {
countLeafCells(gh);
std::vector<T> gas_data(npart); // read/write gas at all levels from the gh
size_t count = 0;
for (int ilevel = levelmax_; ilevel >= (int)levelmin_; --ilevel)
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
gas_data[count++] = (T)(*gh.get_grid(ilevel))(i, j, k) * velFac;
}
if (count != npart)
throw std::runtime_error("Internal consistency error while writing GAS pos");
// calculate modified DM velocities if: multimass and baryons present
if (doBaryons && npcoarse) {
double facb = omega_b / omega0;
double facc = (omega0 - omega_b) / omega0;
std::vector<T> dm_data(npcoarse);
writeHDF5_b("Velocities", coord, coarsePartType, dm_data, true); // read coarse DM vels
// overwrite
for (size_t i = 0; i < npcoarse; i++)
dm_data[i] = facc * dm_data[i] + facb * gas_data[npfine + i];
writeHDF5_b("Velocities", coord, coarsePartType, dm_data); // overwrite coarse DM vels
} // dm_data deallocated
// restrict gas_data to fine only and request write
std::vector<T> data(gas_data.begin() + 0, gas_data.begin() + npfine);
std::vector<T>().swap(gas_data); // deallocate
writeHDF5_b("Velocities", coord, GAS_PARTTYPE, data); // write highres gas
}
template <typename T> void __write_gas_position(int coord, const grid_hierarchy &gh) {
countLeafCells(gh);
// update header (will actually write only gas at levelmax)
hsize_t offset = 0;
for (unsigned i = 0; i < numFiles; i++) {
hsize_t dims = ceil(npfine / numFiles);
if (i == numFiles - 1)
dims = npfine - offset;
nPart[i][GAS_PARTTYPE] = dims;
offset += dims;
}
nPartTotal[GAS_PARTTYPE] = npfine;
std::vector<double> gas_data(npart); // read/write gas at all levels from the gh
size_t count = 0;
double h = 1.0 / (1ul << gh.levelmax());
for (int ilevel = gh.levelmax(); ilevel >= (int)gh.levelmin(); --ilevel)
for (unsigned i = 0; i < gh.get_grid(ilevel)->size(0); ++i)
for (unsigned j = 0; j < gh.get_grid(ilevel)->size(1); ++j)
for (unsigned k = 0; k < gh.get_grid(ilevel)->size(2); ++k)
if (gh.is_in_mask(ilevel, i, j, k) && !gh.is_refined(ilevel, i, j, k)) {
double xx[3];
gh.cell_pos(ilevel, i, j, k, xx);
// shift particle positions (this has to be done as the same shift
// is used when computing the convolution kernel for SPH baryons)
xx[coord] += 0.5 * h;
xx[coord] = (xx[coord] + (*gh.get_grid(ilevel))(i, j, k)) * boxSize;
gas_data[count++] = xx[coord];
}
if (count != npart)
throw std::runtime_error("Internal consistency error while writing coarse DM pos");
// calculate modified DM coordinates if: multimass and baryons present
if (doBaryons && npcoarse) {
double facb = omega_b / omega0;
double facc = (omega0 - omega_b) / omega0;
std::vector<T> dm_data(npcoarse);
writeHDF5_b("Coordinates", coord, coarsePartType, dm_data, true); // read coarse DM vels
// overwrite
for (size_t i = 0; i < npcoarse; i++) {
dm_data[i] = facc * dm_data[i] + facb * gas_data[npfine + i];
dm_data[i] = fmod(dm_data[i] + boxSize, boxSize) * posFac;
}
writeHDF5_b("Coordinates", coord, coarsePartType, dm_data); // overwrite coarse DM vels
}
// restrict gas_data to fine only and request write
// std::vector<float> data( gas_data.begin() + 0, gas_data.begin() + npfine );
std::vector<T> data(npfine);
for (size_t i = 0; i < npfine; i++)
data[i] = (T)(fmod(gas_data[i] + boxSize, boxSize) * posFac);
std::vector<double>().swap(gas_data); // deallocate
writeHDF5_b("Coordinates", coord, GAS_PARTTYPE, data); // write highres gas
}
public:
swift_output_plugin(config_file &cf) : output_plugin(cf) {
// ensure that everyone knows we want to do SPH, implies: bsph=1, bbshift=1, decic_baryons=1
// -> instead of just writing gas densities (which are here ignored), the gas displacements are also written
cf.insertValue("setup", "do_SPH", "yes");
// init header and config parameters
nPartTotal = std::vector<long long>(NTYPES, 0);
massTable = std::vector<double>(NTYPES, 0.0);
coarsePartType = cf.getValueSafe<unsigned>("output", "swift_coarsetype", COARSE_DM_DEFAULT_PARTTYPE);
UnitLength_in_cm = cf.getValueSafe<double>("output", "swift_unitlength", 3.085678e24); // 1.0 Mpc
UnitMass_in_g = cf.getValueSafe<double>("output", "swift_unitmass", 1.989e43); // 1.0e10 solar masses
UnitVelocity_in_cm_per_s = cf.getValueSafe<double>("output", "swift_unitvel", 1e5); // 1 km/sec
omega0 = cf.getValue<double>("cosmology", "Omega_m");
omega_b = cf.getValue<double>("cosmology", "Omega_b");
omega_L = cf.getValue<double>("cosmology", "Omega_L");
redshift = cf.getValue<double>("setup", "zstart");
boxSize = cf.getValue<double>("setup", "boxlength");
doBaryons = cf.getValueSafe<bool>("setup", "baryons", false);
useLongIDs = cf.getValueSafe<bool>("output", "swift_longids", false);
numFiles = cf.getValueSafe<unsigned>("output", "swift_num_files", 1);
doublePrec = cf.getValueSafe<bool>("output", "swift_doubleprec", 0);
for (unsigned i = 0; i < numFiles; i++)
nPart.push_back(std::vector<unsigned int>(NTYPES, 0));
// factors which multiply positions and velocities
time = 1.0 / (1.0 + redshift);
posFac = 3.085678e24 / UnitLength_in_cm; // MUSIC uses Mpc internally, i.e. posFac=1e3 for kpc output
velFac = boxSize;
// critical density
rhoCrit = 27.7519737; // in h^2 1e10 M_sol / Mpc^3
rhoCrit *= pow(UnitLength_in_cm / 3.085678e24, 3.0);
rhoCrit *= (1.989e43 / UnitMass_in_g);
// calculate PMGRID suggestion
pmgrid = pow(2, levelmin_) * 2; // unigrid
gridboost = 1;
if (levelmin_ != levelmax_) {
double lxref[3], x0ref[3], x1ref[3];
double pmgrid_new;
the_region_generator->get_AABB(x0ref, x1ref, levelmax_); // generalized beyond box
for (int i = 0; i < 3; i++)
lxref[i] = x1ref[i] - x0ref[i];
// fraction box length of the zoom region
lxref[0] = pow((lxref[0] * lxref[1] * lxref[2]), 0.333);
pmgrid_new = pow(2, levelmax_) * 2; // to cover entire box at highest resolution
pmgrid_new *= lxref[0]; // only need to cover a fraction
if ((gridboost = round(pmgrid_new / pmgrid)) > 1)
gridboost = pow(2, ceil(log(gridboost) / log(2.0))); // round to nearest, higher power of 2
if (gridboost == 0)
gridboost = 1;
}
// calculate Tini for gas
hubbleParam = cf.getValue<double>("cosmology", "H0") / 100.0;
double astart = 1.0 / (1.0 + redshift);
double h2 = hubbleParam * hubbleParam;
double adec = 1.0 / (160.0 * pow(omega_b * h2 / 0.022, 2.0 / 5.0));
double Tcmb0 = 2.726;
rhoCrit *= h2;
posFac /= hubbleParam;
Tini = astart < adec ? Tcmb0 / astart : Tcmb0 / astart / astart * adec;
// calculate softening suggestion
softening = (boxSize * posFac) / pow(2, levelmax_) / 40.0;
// header and sanity checks
if (!doBaryons)
massTable[HIGHRES_DM_PARTTYPE] = omega0 * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmax_);
else
massTable[HIGHRES_DM_PARTTYPE] =
(omega0 - omega_b) * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmax_);
if (coarsePartType == GAS_PARTTYPE || coarsePartType == HIGHRES_DM_PARTTYPE)
throw std::runtime_error("Error: Specified illegal Swift particle type for coarse particles.");
if (coarsePartType == STAR_PARTTYPE)
LOGWARN("WARNING: Specified coarse particle type will collide with stars if USE_SFR enabled.");
// create file(s)
for (unsigned i = 0; i < numFiles; i++) {
std::string filename = fname_;
if (numFiles > 1) {
size_t pos = filename.find(".hdf5");
if (pos != filename.length() - 5)
throw std::runtime_error("Error: Unexpected output filename (doesn't end in .hdf5).");
std::stringstream s;
s << "." << i << ".hdf5";
filename.replace(pos, 5, s.str());
}
HDFCreateFile(filename);
// create particle type groups
std::stringstream GrpName;
GrpName << "PartType" << HIGHRES_DM_PARTTYPE;
HDFCreateGroup(filename, GrpName.str().c_str()); // highres or unigrid DM
if (doBaryons) {
GrpName.str("");
GrpName << "PartType" << GAS_PARTTYPE;
HDFCreateGroup(filename, GrpName.str().c_str()); // gas
}
if (levelmax_ != levelmin_) // multimass
{
GrpName.str("");
GrpName << "PartType" << coarsePartType;
HDFCreateGroup(filename, GrpName.str().c_str()); // coarse DM
}
}
}
~swift_output_plugin() {}
/* ------------------------------------------------------------------------------- */
void write_dm_mass(const grid_hierarchy &gh) {
if (!doublePrec)
__write_dm_mass<float>(gh);
else
__write_dm_mass<double>(gh);
}
void write_dm_position(int coord, const grid_hierarchy &gh) {
if (!doublePrec)
__write_dm_position<float>(coord, gh);
else
__write_dm_position<double>(coord, gh);
}
void write_dm_velocity(int coord, const grid_hierarchy &gh) {
if (!doublePrec)
__write_dm_velocity<float>(coord, gh);
else
__write_dm_velocity<double>(coord, gh);
}
void write_dm_density(const grid_hierarchy &gh) { /* skip */
}
void write_dm_potential(const grid_hierarchy &gh) { /* skip */
}
/* ------------------------------------------------------------------------------- */
void write_gas_velocity(int coord, const grid_hierarchy &gh) {
if (!doublePrec)
__write_gas_velocity<float>(coord, gh);
else
__write_gas_velocity<double>(coord, gh);
}
void write_gas_position(int coord, const grid_hierarchy &gh) {
if (!doublePrec)
__write_gas_position<float>(coord, gh);
else
__write_gas_position<double>(coord, gh);
}
void write_gas_density(const grid_hierarchy &gh) {
// if only saving highres gas, then all gas cells have the same initial mass
// do not write out densities as we write out displacements
if (doBaryons)
massTable[GAS_PARTTYPE] = omega_b * rhoCrit * pow(boxSize * posFac, 3.0) / pow(2, 3 * levelmax_);
}
void write_gas_potential(const grid_hierarchy &gh) { /* skip */
}
void finalize(void) {
// generate and add contiguous IDs for each particle type we have written
generateAndWriteIDs();
std::vector<unsigned int> nPartTotalLW(nPartTotal.size());
std::vector<unsigned int> nPartTotalHW(nPartTotal.size());
for (size_t i = 0; i < nPartTotalHW.size(); i++) {
nPartTotalHW[i] = (unsigned)((size_t)nPartTotal[i] >> 32);
nPartTotalLW[i] = (unsigned int)((size_t)nPartTotal[i]);
}
// output particle counts
std::cout << " - Swift : wrote " << nPartTotAllTypes << " particles..." << std::endl;
for (size_t i = 0; i < nPartTotal.size(); i++)
std::cout << " type [" << i << "] : " << std::setw(12) << nPartTotal[i] << std::endl;
std::cout << std::endl;
// write final header (some of these fields are required, others are extra info)
for (unsigned i = 0; i < numFiles; i++) {
std::string filename = fname_;
if (numFiles > 1) {
std::stringstream s;
s << "." << i << ".hdf5";
filename.replace(filename.find(".hdf5"), 5, s.str());
std::cout << " " << filename;
for (size_t j = 0; j < nPart[i].size(); j++)
std::cout << " " << std::setw(10) << nPart[i][j];
std::cout << std::endl;
}
// Write UNITS header using the physical constants assumed internally by SWIFT
HDFCreateGroup(filename, "Units");
HDFWriteGroupAttribute(filename, "Units", "Unit mass in cgs (U_M)", 1.98841e43); // 10^10 Msun in grams
HDFWriteGroupAttribute(filename, "Units", "Unit length in cgs (U_L)", 3.08567758149e24); // 1 Mpc in cm
HDFWriteGroupAttribute(filename, "Units", "Unit time in cgs (U_t)", 3.08567758149e19); // so that unit vel is 1 km/s
HDFWriteGroupAttribute(filename, "Units", "Unit current in cgs (U_I)", 1.0); // 1 Ampere
HDFWriteGroupAttribute(filename, "Units", "Unit temperature in cgs (U_T)", 1.0); // 1 Kelvin
HDFCreateGroup(filename, "Header");
HDFWriteGroupAttribute(filename, "Header", "NumPart_ThisFile", nPart[i]);
HDFWriteGroupAttribute(filename, "Header", "NumPart_Total", nPartTotalLW);
HDFWriteGroupAttribute(filename, "Header", "NumPart_Total_HighWord", nPartTotalHW);
HDFWriteGroupAttribute(filename, "Header", "NumPartTypes", massTable.size());
HDFWriteGroupAttribute(filename, "Header", "MassTable", massTable);
HDFWriteGroupAttribute(filename, "Header", "InitialMassTable", massTable);
HDFWriteGroupAttribute(filename, "Header", "BoxSize", boxSize / hubbleParam); //might prefer / hubble_param OR have Swift deal with h factors
HDFWriteGroupAttribute(filename, "Header", "NumFilesPerSnapshot", numFiles);
HDFWriteGroupAttribute(filename, "Header", "Dimension", 3);
HDFWriteGroupAttribute(filename, "Header", "Time", time);
HDFWriteGroupAttribute(filename, "Header", "Redshift", redshift);
HDFWriteGroupAttribute(filename, "Header", "Scale-factor", redshift);
HDFWriteGroupAttribute(filename, "Header", "Omega0", omega0); //this might be CDM plus baryons
HDFWriteGroupAttribute(filename, "Header", "OmegaLambda", omega_L);
HDFWriteGroupAttribute(filename, "Header", "OmegaBaryon", omega_b);
HDFWriteGroupAttribute(filename, "Header", "HubbleParam", hubbleParam);
HDFWriteGroupAttribute(filename, "Header", "Flag_Sfr", 0);
HDFWriteGroupAttribute(filename, "Header", "Flag_Cooling", 0);
HDFWriteGroupAttribute(filename, "Header", "Flag_StellarAge", 0);
HDFWriteGroupAttribute(filename, "Header", "Flag_Metals", 0);
HDFWriteGroupAttribute(filename, "Header", "Flag_Feedback", 0);
HDFWriteGroupAttribute(filename, "Header", "Flag_DoublePrecision", (int)doublePrec);
HDFWriteGroupAttribute(filename, "Header", "Music_levelmin", levelmin_);
HDFWriteGroupAttribute(filename, "Header", "Music_levelmax", levelmax_);
HDFWriteGroupAttribute(filename, "Header", "Music_levelcounts", levelcounts);
HDFWriteGroupAttribute(filename, "Header", "longIDs", (int)useLongIDs);
HDFWriteGroupAttribute(filename, "Header", "suggested_pmgrid", pmgrid);
// HDFWriteGroupAttribute(filename, "Header", "suggested_gridboost", gridboost);
HDFWriteGroupAttribute(filename, "Header", "suggested_highressoft", softening);
// HDFWriteGroupAttribute(filename, "Header", "suggested_gas_Tinit", Tini);
HDFWriteGroupAttribute(filename, "Header", "Flag_Entropy_ICs", 0);
HDFWriteGroupAttribute(filename, "Header", "Virtual", 0);
HDFWriteGroupAttribute(filename, "Header", "ThisFile", i);
HDFWriteGroupAttribute(filename, "Header", "TimeBase_dloga", 3.20238316e-17); // copied this from first snapshot of swift agora sim
HDFWriteGroupAttribute(filename, "Header", "TimeBase_dt", 5.91490951e-20); // same as above
HDFCreateGroup(filename, "ICs_parameters");
HDFWriteGroupAttribute(filename, "ICs_parameters", "Code", std::string("MUSIC-Panphasia"));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Git Revision", std::string(GIT_REV));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Git Tag", std::string(GIT_TAG));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Git Branch", std::string(GIT_BRANCH));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Precision", std::string(CMAKE_PRECISION_STR));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Convolutions", std::string(CMAKE_CONVOLVER_STR));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "PLT", std::string(CMAKE_PLT_STR));
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "LPT Order", order);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Particle Load", load);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Transfer Function", tf);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Cosmology Parameter Set", cosmo_set);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Random Generator", rng);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Mode Fixing", do_fixing);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Mode inversion", do_invert);
HDFWriteGroupAttribute(filename, "ICs_parameters", "Baryons", (int)doBaryons);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Baryons Relative Velocity", do_baryonsVrel);
// HDFWriteGroupAttribute(fname_, "ICs_parameters", "Grid Resolution", L);
HDFCreateGroup(filename, "Cosmology");
HDFWriteGroupAttribute(filename, "Cosmology", "Omega_b", omega_b);
HDFWriteGroupAttribute(filename, "Cosmology", "Omega_cdm", omega0 - omega_b); //since omega0 + omega_L = 1
HDFWriteGroupAttribute(filename, "Cosmology", "Omega_lambda", omega_L);
HDFWriteGroupAttribute(filename, "Cosmology", "h", hubbleParam);
}
// give config/parameter file hints
if (useLongIDs)
std::cout << " - Swift: Wrote 64bit IDs, enable LONGIDS." << std::endl;
if (doublePrec)
std::cout << " - Swift: Double precision ICs, set INPUT_IN_DOUBLEPRECISION." << std::endl;
if (NTYPES != 6)
std::cout << " - Swift: Using [" << NTYPES << "] particle types, set NTYPES to match." << std::endl;
if (doBaryons)
std::cout << " - Swift: Wrote high-res gas (only), set REFINEMENT_HIGH_RES_GAS and GENERATE_GAS_IN_ICS with "
<< "SPLIT_PARTICLE_TYPE=" << pow(2, coarsePartType) << "." << std::endl;
if (levelmax_ != levelmin_)
std::cout << " - Swift: Have zoom type ICs, set PLACEHIGHRESREGION=" << pow(2, HIGHRES_DM_PARTTYPE)
<< " (suggest PMGRID=" << pmgrid << " with GRIDBOOST=" << gridboost << ")." << std::endl;
else
std::cout << " - Swift: Have unigrid type ICs (suggest PMGRID=" << pmgrid << ")." << std::endl;
if (levelmax_ > levelmin_ + 1)
std::cout << " - Swift: More than one coarse DM mass using same type, set INDIVIDUAL_GRAVITY_SOFTENING="
<< pow(2, coarsePartType) << " (+" << pow(2, STAR_PARTTYPE) << " if including stars)." << std::endl;
if (doBaryons)
std::cout << " - Swift: Set initial gas temperature to " << std::fixed << std::setprecision(3) << Tini << " K."
<< std::endl;
std::cout << " - Swift: Suggest grav softening = " << std::setprecision(3) << softening << " for high res DM."
<< std::endl;
}
};
namespace {
output_plugin_creator_concrete<swift_output_plugin> creator("swift");
}
#endif // HAVE_HDF5

View file

@ -337,9 +337,9 @@ void RNG_panphasia::fill_grid(int level, DensityGrid<real_t> &R) {
LOGINFO("ileft_corner_p[0,1,2] = (%d,%d,%d)",ileft_corner_p[0],ileft_corner_p[1],ileft_corner_p[2]);
LOGINFO("nxremap[0,1,2] = (%d,%d,%d)",nxremap[0],nxremap[1],nxremap[2]);
size_t ngp = nxremap[0] * nxremap[1] * (nxremap[2] + 2);
size_t ngp = (size_t)nxremap[0] * (size_t)nxremap[1] * (size_t)(nxremap[2] + 2); //size_t should be long unsigned int
pr0 = new fftw_real[ngp];
pr0 = new fftw_real[ngp]; //fftw_real is either double or float depending on SINGLEPRECISION being set.
pr1 = new fftw_real[ngp];
pr2 = new fftw_real[ngp];
pr3 = new fftw_real[ngp];

BIN
rand.mod

Binary file not shown.

Binary file not shown.

Binary file not shown.