1
0
Fork 0
mirror of https://github.com/cosmo-sims/monofonIC.git synced 2024-09-19 17:03:45 +02:00
monofonIC/include/cosmology_parameters.hh

185 lines
No EOL
8.8 KiB
C++

// This file is part of monofonIC (MUSIC2)
// A software package to generate ICs for cosmological simulations
// Copyright (C) 2020 by Oliver Hahn
//
// monofonIC is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// monofonIC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#pragma once
#include <map>
#include <string>
#include <physical_constants.hh>
#include <config_file.hh>
namespace cosmology
{
//! singleton structure for cosmological parameters
class parameters
{
/*double
Omega_m, //!< baryon+dark matter density
Omega_b, //!< baryon matter density
Omega_DE, //!< dark energy density (cosmological constant or parameterised)
Omega_r, //!< photon + relativistic particle density
Omega_k, //!< curvature density
f_b, //!< baryon fraction
H0, //!< Hubble constant in km/s/Mpc
h, //!< hubble parameter
nspect, //!< long-wave spectral index (scale free is nspect=1)
sigma8, //!< power spectrum normalization
Tcmb, //!< CMB temperature (used to set Omega_r)
YHe, //!< Helium fraction
Neff, //!< effective number of neutrino species (used to set Omega_r)
w_0, //!< dark energy equation of state parameter 1: w = w0 + a * wa
w_a, //!< dark energy equation of state parameter 2: w = w0 + a * wa
// below are helpers to store additional information
dplus, //!< linear perturbation growth factor
f, //!< growth factor logarithmic derivative
pnorm, //!< actual power spectrum normalisation factor
sqrtpnorm, //!< sqrt of power spectrum normalisation factor
vfact; //!< velocity<->displacement conversion factor in Zel'dovich approx.
*/
private:
std::map<std::string, double> pmap_;
public:
double get(const std::string &key) const
{
auto it = pmap_.find(key);
if (it == pmap_.end())
{
auto errmsg = std::string("Cosmological parameter \'") + key + std::string("\' does not exist in internal list.");
music::elog << errmsg << std::endl;
throw std::runtime_error(errmsg.c_str());
}
return it->second;
}
void set(const std::string &key, const double value)
{
auto it = pmap_.find(key);
if (it != pmap_.end())
{
pmap_[key] = value;
}
else
{
auto errmsg = std::string("Cosmological parameter \'") + key + std::string("\' does not exist in internal list. Needs to be defaulted before it can be set!");
music::elog << errmsg << std::endl;
throw std::runtime_error(errmsg.c_str());
}
}
inline double operator[](const std::string &key) const { return this->get(key); }
parameters() = delete;
parameters(const parameters &) = default;
explicit parameters(config_file &cf)
{
// CMB
pmap_["Tcmb"] = cf.get_value_safe<double>("cosmology", "Tcmb", 2.7255);
pmap_["YHe"] = cf.get_value_safe<double>("cosmology", "YHe", 0.2454006);
// H0
pmap_["H0"] = cf.get_value<double>("cosmology", "H0");
pmap_["h"] = cf.get_value<double>("cosmology", "H0") / 100.0;
const double h = pmap_["h"];
// primordial and normalisation
if(!cf.contains_key("cosmology/n_s"))
pmap_["n_s"] = cf.get_value<double>("cosmology", "nspec");
else
pmap_["n_s"] = cf.get_value<double>("cosmology", "n_s");
pmap_["A_s"] = cf.get_value_safe<double>("cosmology", "A_s", -1.0);
pmap_["k_p"] = cf.get_value_safe<double>("cosmology", "k_p", 0.05);
pmap_["sigma_8"] = cf.get_value_safe<double>("cosmology", "sigma_8", -1.0);
// baryon and non-relativistic matter content
pmap_["Omega_b"] = cf.get_value<double>("cosmology", "Omega_b");
pmap_["Omega_m"] = cf.get_value<double>("cosmology", "Omega_m");
// massive neutrino species
pmap_["m_nu1"] = cf.get_value_safe<double>("cosmology", "m_nu1", 0.06);
pmap_["m_nu2"] = cf.get_value_safe<double>("cosmology", "m_nu2", 0.0);
pmap_["m_nu3"] = cf.get_value_safe<double>("cosmology", "m_nu3", 0.0);
pmap_["N_nu_massive"] = int(this->get("m_nu1") > 1e-9) + int(this->get("m_nu2") > 1e-9) + int(this->get("m_nu3") > 1e-9);
const double sum_m_nu = this->get("m_nu1") + this->get("m_nu2") + this->get("m_nu3");
// number ultrarelativistic neutrinos
pmap_["N_ur"] = cf.get_value_safe<double>("cosmology", "N_ur", 3.046 - this->get("N_nu_massive"));
pmap_["Omega_nu_massive"] = sum_m_nu / (93.14 * h * h); // Omega_nu_m = \sum_i m_i / (93.14 eV h^2)
// compute amount of cold dark matter as the rest
pmap_["Omega_c"] = this->get("Omega_m") - this->get("Omega_b") - this->get("Omega_nu_massive");
// calculate energy density in ultrarelativistic species from Tcmb and Neff
// photons
pmap_["Omega_gamma"] = 4 * phys_const::sigma_SI / std::pow(phys_const::c_SI, 3) * std::pow(this->get("Tcmb"), 4.0)
/ phys_const::rhocrit_h2_SI / (this->get("h") * this->get("h"));
// massless neutrinos
pmap_["Omega_nu_massless"] = this->get("N_ur") * this->get("Omega_gamma") * 7. / 8. * std::pow(4. / 11., 4. / 3.);
// total relativistic
pmap_["Omega_r"] = this->get("Omega_gamma") + this->get("Omega_nu_massless");
// dark energy
pmap_["Omega_DE"] = cf.get_value<double>("cosmology", "Omega_L");
pmap_["w_0"] = cf.get_value_safe<double>("cosmology", "w_0", -1.0);
pmap_["w_a"] = cf.get_value_safe<double>("cosmology", "w_a", 0.0);
if (cf.get_value_safe<bool>("cosmology", "ZeroRadiation", false))
{
pmap_["Omega_r"] = 0.0;
}
pmap_["f_b"] = this->get("Omega_b") / this->get("Omega_m");
pmap_["f_c"] = 1.0 - this->get("f_b"); // this means we add massive neutrinos to CDM here
#if 1
// assume zero curvature, take difference from dark energy
pmap_["Omega_DE"] += 1.0 - this->get("Omega_m") - this->get("Omega_DE") - this->get("Omega_r");
// Omega_DE += 1.0 - Omega_m - Omega_DE - Omega_r;
pmap_["Omega_k"] = 0.0;
#else
// allow for curvature
Omega_k = 1.0 - Omega_m - Omega_DE - Omega_r;
#endif
pmap_["dplus"] = 0.0;
pmap_["pnorm"] = 0.0;
pmap_["sqrtpnorm"] = 0.0;
pmap_["vfact"] = 0.0;
music::ilog << "-------------------------------------------------------------------------------" << std::endl;
music::ilog << "Cosmological parameters are: " << std::endl;
music::ilog << " h = " << std::setw(16) << this->get("h");
if( this->get("A_s") > 0.0 )
music::ilog << "A_s = " << std::setw(16) << this->get("A_s");
else
music::ilog << "sigma_8 = " << std::setw(16) << this->get("sigma_8");
music::ilog << "nspec = " << std::setw(16) << this->get("n_s") << std::endl;
music::ilog << " Omega_c = " << std::setw(16) << this->get("Omega_c") << "Omega_b = " << std::setw(16) << this->get("Omega_b") << "Omega_m = " << std::setw(16) << this->get("Omega_m") << std::endl;
music::ilog << " Omega_r = " << std::setw(16) << this->get("Omega_r") << "Omega_nu = " << std::setw(16) << this->get("Omega_nu_massive") << "∑m_nu = " << std::setw(11) << sum_m_nu << "eV" << std::endl;
music::ilog << " Omega_DE = " << std::setw(16) << this->get("Omega_DE") << "w_0 = " << std::setw(16) << this->get("w_0") << "w_a = " << std::setw(16) << this->get("w_a") << std::endl;
if (this->get("Omega_r") > 0.0)
{
music::wlog << " Radiation enabled, using Omega_r=" << this->get("Omega_r") << " internally for backscaling." << std::endl;
music::wlog << " Make sure your sim code supports this, otherwise set [cosmology] / ZeroRadiation=true." << std::endl;
}
}
};
} // namespace cosmology