1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-19 16:03:50 +02:00
halo_comparison/halo_mass_functions.py

159 lines
5 KiB
Python

from math import log
from pathlib import Path
import numpy as np
# from colossus.cosmology import cosmology
# from colossus.lss import mass_function
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from paths import base_dir, has_1024_simulations
from read_vr_files import read_velo_halos
from utils import print_progress, figsize_from_page_fraction
def counts_without_inf(number_halos):
with np.errstate(divide='ignore', invalid='ignore'):
number_halos_inverse = 1 / np.sqrt(number_halos)
number_halos_inverse[np.abs(number_halos_inverse) == np.inf] = 0
return number_halos_inverse
def monofonic_tests():
fig: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax: Axes = fig.gca()
linestyles = ["solid", "dotted"]
resolutions = [128]
if has_1024_simulations:
resolutions.append(1024)
else:
resolutions.append(512)
for i, waveform in enumerate(["DB2", "shannon"]):
for j, resolution in enumerate(resolutions):
print(waveform, resolution)
dir = base_dir / f"{waveform}_{resolution}_100"
halos = read_velo_halos(dir)
# halos.to_csv("weird_halos.csv")
halo_masses: np.ndarray = halos["Mvir"].to_numpy()
Ns, deltas, left_edges, number_densities, lower_error_limit, upper_error_limit = halo_mass_function(
halo_masses)
ax.set_xscale("log")
ax.set_yscale("log")
# ax.bar(centers, number_densities, width=widths, log=True, fill=False)
name = f"{waveform} {resolution}"
ax.step(left_edges, number_densities, where="post", color=f"C{i}", linestyle=linestyles[j], label=name)
ax.fill_between(
left_edges,
lower_error_limit,
upper_error_limit, alpha=.5, linewidth=0, step='post')
# break
# break
plt.legend()
fig.savefig(Path(f"~/tmp/halo_mass_function.pdf").expanduser())
plt.show()
def halo_mass_function(halo_masses, num_bins=30, sim_volume=100 ** 3):
bins = np.geomspace(halo_masses.min(), halo_masses.max(), num_bins + 1)
digits = np.digitize(halo_masses, bins)
number_densities = []
widths = []
centers = []
left_edges = []
Ns = []
deltas = []
for bin_id in range(num_bins):
print_progress(bin_id+1, num_bins)
mass_low = bins[bin_id]
mass_high = bins[bin_id + 1]
counter = 0
for val in halo_masses:
if mass_low <= val < mass_high:
counter += 1
delta_mass = mass_high - mass_low
delta_log_mass = log(mass_high) - log(mass_low)
widths.append(delta_mass)
centers.append(mass_low + delta_mass / 2)
left_edges.append(mass_low)
values = np.where(digits == bin_id + 1)[0]
# print(halo_masses[values])
# print(values)
num_halos = values.shape[0]
assert num_halos == counter
nd = num_halos / sim_volume / delta_log_mass
number_densities.append(nd)
Ns.append(num_halos)
deltas.append(delta_mass)
deltas = np.array(deltas)
Ns = np.array(Ns)
left_edges = np.array(left_edges)
number_densities = np.array(number_densities)
lower_error_limit = number_densities - counts_without_inf(Ns) / sim_volume / deltas
upper_error_limit = number_densities + counts_without_inf(Ns) / sim_volume / deltas
return Ns, deltas, left_edges, number_densities, lower_error_limit, upper_error_limit
def hmf_from_rockstar_tree(file: Path):
masses = []
with file.open() as f:
for line in f:
if line.startswith("#"):
continue
cols = line.split()
Mvir = float(cols[10])
masses.append(Mvir)
masses = np.array(masses)
# agora_box_h = 0.702
# masses /= agora_box_h
box_size = 85.47
Ns, deltas, left_edges, number_densities, lower_error_limit, upper_error_limit = halo_mass_function(
masses,
num_bins=50,
sim_volume=box_size ** 3
)
fig: Figure = plt.figure()
ax: Axes = fig.gca()
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlabel("Halo Mass [$M_\\odot$]")
ax.set_ylabel("Number Density [$\\textrm{\\#}/Mpc^3/dlogM$]")
ax.step(left_edges, number_densities, where="post")
plank_cosmo = cosmology.cosmologies['planck18']
auriga_cosmo = {
"sigma8": 0.807,
"H0": 70.2,
"Om0": 0.272,
"Ob0": 0.0455,
"ns": 0.961
}
cosmology.addCosmology('aurigaCosmo', params={**plank_cosmo, **auriga_cosmo})
cosmology.setCosmology('aurigaCosmo')
print(cosmology.getCurrent())
mfunc = mass_function.massFunction(left_edges, 1, mdef='vir', model='tinker08', q_out='dndlnM')
ax.plot(left_edges, mfunc)
ax.fill_between(
left_edges,
lower_error_limit,
upper_error_limit, alpha=.5, linewidth=0, step='post')
plt.show()
if __name__ == '__main__':
monofonic_tests()
# hmf_from_rockstar_tree(Path(argv[1]))