1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/spectra_plot.py

270 lines
8.7 KiB
Python

import itertools
from pathlib import Path
from sys import argv
from typing import List
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.axes import Axes
from matplotlib.axis import XTick
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from paths import base_dir
from utils import figsize_from_page_fraction, waveforms
Lbox = 100
h = 0.690021
k0 = 3.14159265358979323846264338327950 / Lbox
resolutions = [128, 256, 512, 1024]
# Careful: k is actually in Mpc^-1, the column is just named weirdly.
columns = [
"k [Mpc]",
"Pcross",
"P1",
"err. P1",
"P2",
"err. P2",
"P2-1",
"err. P2-1",
"modes in bin",
]
# linestyles = ["solid", "dashed", "dotted"]
colors = [f"C{i}" for i in range(10)]
# colors = ["C1", "C2", "C3", "C4"]
def spectra_data(
waveform: str, resolution_1: int, resolution_2: int, Lbox: int, time: str
):
dir = base_dir / f"spectra/{waveform}_{Lbox}"
if time == "ics":
spectra_data = pd.read_csv(
f"{dir}/{waveform}_{Lbox}_ics_{resolution_1}_{resolution_2}_cross_spectrum.txt",
sep=" ",
skipinitialspace=True,
header=None,
names=columns,
skiprows=1,
)
elif time == "z=1":
spectra_data = pd.read_csv(
f"{dir}/{waveform}_{Lbox}_a2_{resolution_1}_{resolution_2}_cross_spectrum.txt",
sep=" ",
skipinitialspace=True,
header=None,
names=columns,
skiprows=1,
)
elif time == "end":
spectra_data = pd.read_csv(
f"{dir}/{waveform}_{Lbox}_a4_{resolution_1}_{resolution_2}_cross_spectrum.txt",
sep=" ",
skipinitialspace=True,
header=None,
names=columns,
skiprows=1,
)
else:
raise ValueError(f"invalid time ({time}) should be (ics|z=1|end)")
# only consider rows above resolution limit
spectra_data = spectra_data[spectra_data["k [Mpc]"] >= k0]
return spectra_data
def create_plot(mode):
fig: Figure
combination_list = list(itertools.combinations(resolutions, 2))
fig, axes = plt.subplots(
len(waveforms),
3,
sharex=True,
sharey=True,
figsize=figsize_from_page_fraction(columns=2, height_to_width=.5),
)
crossings = np.zeros((len(waveforms), len(combination_list)))
for i, waveform in enumerate(waveforms):
ax_ics: Axes = axes[i][0]
ax_z1: Axes = axes[i][1]
ax_end: Axes = axes[i][2]
axes_names = {
# TODO: better names
ax_ics: "ics",
ax_z1: "z=1",
ax_end: "z=0",
}
bottom_row = i == len(waveforms) - 1
top_row = i == 0
# for is_end, ax in enumerate([ax_ics, ax_z1]):
for is_end, ax in enumerate([ax_ics, ax_z1, ax_end]):
if bottom_row:
ax.set_xlabel("k [Mpc$^{-1}$]")
ax.text(
0.01,
0.82,
f"{waveform}",
horizontalalignment="left",
verticalalignment="top",
transform=ax.transAxes,
)
ax.text(
0.99,
0.82,
axes_names[ax],
horizontalalignment="right",
verticalalignment="top",
transform=ax.transAxes,
)
ax.set_axisbelow(True)
ax.grid(color="black", linestyle=":", linewidth=0.5, alpha=0.5)
for j, res in enumerate(
resolutions[:-1] if mode == "cross" else resolutions
):
ax.axvline(
k0 * res,
color=colors[j],
linestyle="dashed",
label=f"$k_\\mathrm{{ny, {res}}}$" if mode == "power" else None,
)
# ax.set_xticklabels([])
# ax.set_yticklabels([])
if mode == "power":
ax_ics.set_ylabel(
r"$\mathrm{P}_\mathrm{X}$ / $\mathrm{P}_{1024}$"
)
for j, resolution in enumerate(resolutions):
ics_data = spectra_data(waveform, resolution, resolution, Lbox, "ics")
ics_k = ics_data["k [Mpc]"]
ics_p1 = ics_data["P1"]
comp_data = spectra_data(
waveform, resolutions[-1], resolutions[-1], Lbox, "ics"
)
comp_p1 = comp_data["P1"]
ics_p1 /= comp_p1
end_data = spectra_data(waveform, resolution, resolution, Lbox, "end")
end_k = end_data["k [Mpc]"]
end_p1 = end_data["P1"]
comp_data = spectra_data(
waveform, resolutions[-1], resolutions[-1], Lbox, "end"
)
comp_p1 = comp_data["P1"]
end_p1 /= comp_p1
z1_data = spectra_data(waveform, resolution, resolution, Lbox, "z=1")
z1_k = z1_data["k [Mpc]"]
z1_p1 = z1_data["P1"]
comp_data = spectra_data(
waveform, resolutions[-1], resolutions[-1], Lbox, "z=1"
)
comp_p1 = comp_data["P1"]
z1_p1 /= comp_p1
ax_ics.semilogx(ics_k, ics_p1, color=colors[j])
ax_z1.semilogx(z1_k, z1_p1, color=colors[j])
ax_end.semilogx(end_k, end_p1, color=colors[j])
for ax in [ax_ics, ax_z1, ax_end]:
ax.set_ylim(0.9, 1.10)
# fig.suptitle(f"Power Spectra {time}") #Not needed for paper
# fig.tight_layout()
elif mode == "cross":
ax_ics.set_ylabel("C")
# ax_end.set_ylabel("C")
for j, (res1, res2) in enumerate(combination_list):
ics_data = spectra_data(waveform, res1, res2, Lbox, "ics")
ics_k = ics_data["k [Mpc]"]
ics_pcross = ics_data["Pcross"]
ax_ics.semilogx(
ics_k, ics_pcross, color=colors[j + 3], label=f"{res1} vs {res2}"
)
z1_data = spectra_data(waveform, res1, res2, Lbox, "z=1")
z1_k = z1_data["k [Mpc]"]
z1_pcross = z1_data["Pcross"]
ax_z1.semilogx(
z1_k, z1_pcross, color=colors[j + 3], label=f"{res1} vs {res2}"
)
end_data = spectra_data(waveform, res1, res2, Lbox, "end")
end_k = end_data["k [Mpc]"]
end_pcross = end_data["Pcross"]
ax_end.semilogx(
end_k, end_pcross, color=colors[j + 3], label=f"{res1} vs {res2}"
)
# #Put this here to enable changing time of crossing measurement more easily
smaller_res = min(res1, res2)
crossing_index = np.searchsorted(
end_k.to_list(), k0 * smaller_res
) # change here
crossing_value = end_pcross[crossing_index] # and here
crossings[i][j] = crossing_value
ax_end.set_xlim(right=k0 * resolutions[-1])
ax_end.set_ylim(0.9, 1.02)
if bottom_row:
lines: List[Line2D] = ax_ics.get_lines()
half_lines1 = []
half_lines2 = []
for line in lines:
lab = line.get_label()
if (
(mode == "cross" and lab.startswith("128"))
or
(mode == "power" and ("128" in lab or "256" in lab))
):
half_lines1.append(line)
else:
half_lines2.append(line)
ax_ics.legend(handles=half_lines1, loc="lower left")
ax_z1.legend(handles=half_lines2, loc="lower left")
if not bottom_row:
last_xtick: XTick = ax_ics.yaxis.get_major_ticks()[0]
last_xtick.set_visible(False)
# fig.suptitle(f"Cross Spectra {time}") #Not needed for paper
# fig.tight_layout()
if mode == "cross":
print(crossings)
crossings_df = pd.DataFrame(crossings, columns=combination_list, index=waveforms)
# print(crossings_df.to_markdown())
print(crossings_df.to_latex())
fig.tight_layout()
fig.subplots_adjust(wspace=0, hspace=0)
fig.savefig(Path(f"~/tmp/spectra_{mode}.pdf").expanduser())
def main():
if len(argv) < 2:
print("run spectra_plot.py [power|cross] or spectra_plot.py all")
exit(1)
if argv[1] == "all":
for mode in ["power", "cross"]:
create_plot(mode)
plt.show()
return
mode = argv[1]
create_plot(mode)
plt.show()
if __name__ == "__main__":
main()