1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/read_vr_files.py

213 lines
7.1 KiB
Python

from pathlib import Path
from typing import Dict, Tuple, Optional
import h5py
import numpy as np
import pandas as pd
from h5py import Dataset
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from pandas import DataFrame
from halo_mass_profile import V
from paths import base_dir
from readfiles import read_file
from utils import print_progress
HaloParticleMapping = Dict[int, set[int]]
def all_children(df: DataFrame, id: int):
subhalos: pd.DataFrame = df.loc[df.parent_halo_id == id]
if len(subhalos) == 0:
yield id
for sh, value in subhalos.iterrows():
yield from all_children(df, sh)
def particles_in_halo(
offsets: Dict[int, int], particle_ids: np.ndarray
) -> HaloParticleMapping:
"""
get mapping from halo ID to particle ID set by using the offset and a lookup in the particle array
"""
halo_particle_ids: Dict[int, set[int]] = {}
pointer = 0
for halo_id, offset in offsets.items():
if halo_id % 100 == 0:
print_progress(halo_id, len(offsets))
if halo_id != len(offsets):
end = offsets[halo_id + 1]
else: # special handling for last halo
end = -1
ids = particle_ids[pointer:end]
halo_particle_ids[halo_id] = set(ids)
pointer = end
return halo_particle_ids
# if recursivly:
# # add particles of subhalos to parent halos
# # maybe not such a good idea
# for halo_id in range(1, len(df) + 1):
# sub_n_children = list(all_children(df, halo_id)) # IDs of children, subchildren, ...
# if not sub_n_children:
# continue
# for child_id in sub_n_children:
# child_particles = halo_particle_ids[child_id]
# halo_particle_ids[halo_id].update(child_particles)
def cached_particles_in_halo(file: Path, *args, **kwargs) -> HaloParticleMapping:
"""
Save mapping from halo ID to set of particle IDs into HDF5 file.
Every halo is a dataset with its ID as the name and the list of particles as value.
Unfortunatly this is magnitudes slower than doing the calculation itself as HDF5 is not
intended for 100K small datasets making this whole function pointless.
"""
if file.exists():
print("loading from cache")
with h5py.File(file) as data_file:
halo_particle_ids: HaloParticleMapping = {}
i = 0
for name, dataset in data_file.items():
halo_particle_ids[int(name)] = set(dataset)
print_progress(i, len(data_file))
i += 1
else:
halo_particle_ids = particles_in_halo(*args, **kwargs)
print("saving to cache")
with h5py.File(file, "w") as data_file:
for key, valueset in halo_particle_ids.items():
data_file.create_dataset(
str(key),
data=list(valueset),
compression="gzip",
compression_opts=5,
)
return halo_particle_ids
def read_velo_halos(directory: Path, veloname="vroutput"):
"""
Returns a dataframe containing all scalar properties of the halos
(https://velociraptor-stf.readthedocs.io/en/latest/output.html),
"""
if (directory / f"{veloname}.catalog_groups.0").exists():
suffix = ".0"
else:
suffix = ""
group_catalog = h5py.File(directory / f"{veloname}.catalog_groups{suffix}")
group_properties = h5py.File(directory / f"{veloname}.properties{suffix}")
scalar_properties = {}
for k, v in group_properties.items():
if not isinstance(v, Dataset):
# skip groups
continue
if len(v.shape) != 1:
print(v)
continue
if len(v) == 1:
# skip global properties like Total_num_of_groups
continue
scalar_properties[k] = v
scalar_properties["X"] = scalar_properties["Xc"]
scalar_properties["Y"] = scalar_properties["Yc"]
scalar_properties["Z"] = scalar_properties["Zc"]
data = {
"group_size": group_catalog["Group_Size"],
"offset": group_catalog["Offset"],
"offset_unbound": group_catalog["Offset_unbound"],
"parent_halo_id": group_catalog["Parent_halo_ID"],
}
df = pd.DataFrame(
{**data, **scalar_properties}
) # create dataframe from two merged dicts
df.index += 1 # Halo IDs start at 1
return df
def read_velo_halo_particles(
directory: Path, skip_halo_particle_ids=False, skip_unbound=True
) -> Tuple[DataFrame, Optional[HaloParticleMapping], Optional[HaloParticleMapping]]:
"""
This reads the output files of VELOCIraptor
and returns the halo data from read_velo_halos
and two dictionaries mapping the halo IDs to sets of particle IDs
"""
if (directory / f"vroutput.catalog_particles.0").exists():
suffix = ".0"
else:
suffix = ""
df = read_velo_halos(directory)
particle_catalog = h5py.File(directory / f"vroutput.catalog_particles{suffix}")
particle_ids = np.asarray(particle_catalog["Particle_IDs"])
particle_catalog_unbound = h5py.File(
directory / f"vroutput.catalog_particles.unbound{suffix}"
)
particle_ids_unbound = particle_catalog_unbound["Particle_IDs"][:]
if skip_halo_particle_ids:
return df, None, None
print("look up bound particle IDs")
# particle_cache_file = directory / "vrbound.cache.hdf5"
# ub_particle_cache_file = directory / "vrunbound.cache.hdf5"
halo_offsets = dict(df["offset"])
halo_particle_ids = particles_in_halo(halo_offsets, particle_ids)
if skip_unbound:
halo_particle_unbound_ids = {}
else:
print("look up unbound particle IDs")
halo_unbound_offsets = dict(df["offset_unbound"])
halo_particle_unbound_ids = particles_in_halo(
halo_unbound_offsets, particle_ids_unbound
)
return df, halo_particle_ids, halo_particle_unbound_ids
def read_velo_profiles(directory: Path):
if (directory / f"vroutput.profiles.0").exists():
suffix = ".0"
else:
suffix = ""
profiles_file = h5py.File(directory / f"vroutput.profiles{suffix}")
bin_edges = profiles_file["Radial_bin_edges"][1:]
bin_volumes = V(bin_edges)
mass_profiles = profiles_file["Mass_profile"][:]
density_profiles = mass_profiles / bin_volumes
return bin_edges, mass_profiles, density_profiles
def main():
waveform = "shannon"
Nres = 512
directory = base_dir / f"{waveform}_{Nres}_100"
df_halo, halo_particle_ids, halo_particle_unbound_ids = read_velo_halo_particles(
directory
)
particles, meta = read_file(directory)
HALO = 1000
while True:
fig: Figure = plt.figure()
ax: Axes = fig.gca()
bound_particles = particles.loc[list(halo_particle_ids[HALO])]
unbound_particles = particles.loc[list(halo_particle_unbound_ids[HALO])]
ax.scatter(bound_particles.X, bound_particles.Y, label="bound", s=1)
ax.scatter(unbound_particles.X, unbound_particles.Y, label="unbound", s=1)
plt.show()
HALO += 1
if __name__ == "__main__":
main()