1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/ramses_plot.py

158 lines
5.2 KiB
Python

from pathlib import Path
from subprocess import run
from typing import List
import numpy as np
import pynbody
from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm
from pynbody.array import SimArray
from pynbody.snapshot import FamilySubSnap
from pynbody.snapshot.ramses import RamsesSnap
from scipy import constants
ramses_imager = Path("~/cosmoca/RamsesImager/build/RamsesImager").expanduser()
dir = Path("/media/ssd/cosmos_data/coxeter/richings21_ics/richings21_bary_ramses_7_10_11/")
def get_slice_argument(
extent: List[float], zcenter: float,
ramses_dir: Path, interpolation_method: str,
depth: float):
xmin, xmax, ymin, ymax = extent
# interpolate = interpolation_method == "linear"
interpolate = False
arguments = {
"x": (xmin + xmax) / 2,
"y": (ymin + ymax) / 2,
"z": zcenter,
"w": xmax - xmin,
"h": ymax - ymin,
"d": depth,
"l": 14
}
args = [str(ramses_imager)]
for k, v in arguments.items():
args.append(f"-{k} {v}")
if interpolate:
args.append("-i")
args.append(str(ramses_dir / "info_00009.txt"))
return args, ramses_imager.parent
def load_slice_data(file: Path):
with file.open("rb") as infile:
np.fromfile(file=infile, dtype=np.int32, count=1)
[nx, ny] = np.fromfile(file=infile, dtype=np.int32, count=2)
np.fromfile(file=infile, dtype=np.int32, count=1)
np.fromfile(file=infile, dtype=np.int32, count=1)
data: np.ndarray = np.fromfile(file=infile, dtype=np.float32, count=nx * ny)
np.fromfile(file=infile, dtype=np.int32, count=1)
print("NEGATIVE", (data < 0).sum())
# np.fromfile(file=infile, dtype=np.int32, count=1)
# cm_per_px = np.fromfile(file=infile, dtype=np.float64, count=1)[0]
# np.fromfile(file=infile, dtype=np.int32, count=1)
return data.reshape((nx, ny))
def main():
file = dir / "output_00009"
s: RamsesSnap = pynbody.load(str(file))
gas_data: FamilySubSnap = s.gas
h = s.properties["h"]
a = s.properties["a"]
print("RAMSES a", a)
# dm
mass_array: SimArray = s.dm["mass"]
coord_array: SimArray = s.dm["pos"]
masses = np.asarray(mass_array.in_units("1e10 Msol"))
high_res_mass = np.amin(np.unique(masses)) # get lowest mass of particles
is_high_res_particle = masses == high_res_mass
coordinates = np.asarray(coord_array.in_units("Mpc"))
hr_coordinates = coordinates[is_high_res_particle] / a
np.save(f"/home/lukas/tmp/ramses_grid_hr_coordinates", hr_coordinates)
print(high_res_mass)
# temperature_array: SimArray = gas_data["temp"]
# p_array: SimArray = gas_data["p"].in_units("1e10 Msol Mpc^-3 km^2 s^-2")
# rho_array: SimArray = gas_data["rho"].in_units("1e10 Msol Mpc^-3")
# coord_array: SimArray = gas_data["pos"].in_units("Mpc")
# mass_array = np.asarray(gas_data["mass"].in_units("1e10 Msol"))
# bary_coords = np.asarray(coord_array)
# bary_properties = {
# "Temperatures": np.asarray(temperature_array.in_units("K")),
# "Pressures": np.asarray(p_array),
# "Densities": np.asarray(rho_array),
# "Entropies": np.asarray(np.log10(p_array / rho_array ** (5 / 3))),
# }
michael_extent = np.asarray([[32.07045664, 34.13128024],
[37.562513, 39.6233366],
[34.54953566, 36.61035927]])
frac_extent = michael_extent[:2].flatten() / 100 / h
frac_center = michael_extent[2].mean() / 100 / h
# old extents:
# frac_extent=[0.46938643, 0.50738643, 0.55012166, 0.58812166]
# frac_center=0.52467408
print("frac")
print(frac_extent)
print(frac_center)
args, imager_dir = get_slice_argument(
frac_extent, frac_center,
file, interpolation_method="nearest",
depth=0.00000000001
# depth=depth
)
print(" ".join(args))
run(args, cwd=imager_dir)
property_map = {
"Densities": "rhomap",
"Entropies": "Smap",
"Temperatures": "Tmap"
}
for property in ["cic", "Densities", "Entropies", "Temperatures"]:
if property == "cic":
...
else:
fname = imager_dir / f"snapshot_{property_map[property]}_zproj_zobs-0p00.bin"
grid = load_slice_data(fname).T
if grid.sum() == 0:
raise ValueError("all 0")
if property == "Densities":
# convert g/cm^3 to 1e10 Msol Mpc^-3
solar_mass_in_gram = 1.988e33
mpc_in_cm = constants.parsec * constants.mega * 100
grid = np.asarray(grid)
grid *= (mpc_in_cm ** 3 / solar_mass_in_gram / 1e10)
print(grid.shape, "shape")
print(grid)
plt.figure()
plt.imshow(
grid,
norm=LogNorm(),
interpolation="none",
origin="lower",
extent=frac_extent * 100,
)
plt.colorbar()
plt.savefig(f"/home/lukas/tmp/ramses_grid_{property}.pdf")
np.save(f"/home/lukas/tmp/ramses_grid_{property}", grid)
plt.show()
if __name__ == '__main__':
main()