1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/ramses.py

76 lines
2.5 KiB
Python

from pathlib import Path
from typing import List
import numpy as np
import pynbody
from pynbody.array import SimArray
from pynbody.snapshot.ramses import RamsesSnap
from readfiles import ParticlesMeta
def load_ramses_data(ramses_dir: Path):
s: RamsesSnap = pynbody.load(str(ramses_dir))
mass_array: SimArray = s.dm["mass"]
coord_array: SimArray = s.dm["pos"]
a = s.properties["a"]
print("RAMSES a", a)
# p = Profile(s.gas, ndim=3)
# s.gas["pos"]-=
# fig,ax=create_figure()
# ax.plot(p['rbins'], p['density'], 'k')
# plt.show()
# exit()
masses = np.asarray(mass_array.in_units("1e10 Msol"))
high_res_mass = np.amin(np.unique(masses)) # get lowest mass of particles
is_high_res_particle = masses == high_res_mass
coordinates = np.asarray(coord_array.in_units("Mpc"))
hr_coordinates = coordinates[is_high_res_particle] / a
particles_meta = ParticlesMeta(particle_mass=high_res_mass)
center = np.median(hr_coordinates, axis=0)
return hr_coordinates, particles_meta, center
def get_slice_argument(extent: List[float], center: List[float], ramses_dir: Path, interpolation_method: str,
depth: float):
xmin, xmax, ymin, ymax = extent
_, _, zcenter = center
interpolate=interpolation_method=="linear"
arguments = {
"x": (xmin + xmax) / 2,
"y": (ymin + ymax) / 2,
"z": zcenter,
"w": xmax - xmin,
"h": ymax - ymin,
"d": depth,
"l": 14 if interpolate else 12
}
from paths import ramses_imager
args = [str(ramses_imager)]
for k, v in arguments.items():
args.append(f"-{k} {v}")
if interpolate:
args.append("-i")
args.append(str(ramses_dir / "info_00009.txt"))
return args, ramses_imager.parent
def load_slice_data(file: Path):
with file.open("rb") as infile:
np.fromfile(file=infile, dtype=np.int32, count=1)
[nx, ny] = np.fromfile(file=infile, dtype=np.int32, count=2)
np.fromfile(file=infile, dtype=np.int32, count=1)
np.fromfile(file=infile, dtype=np.int32, count=1)
data: np.ndarray = np.fromfile(file=infile, dtype=np.float32, count=nx * ny)
np.fromfile(file=infile, dtype=np.int32, count=1)
print("NEGATIVE", (data < 0).sum())
# np.fromfile(file=infile, dtype=np.int32, count=1)
# cm_per_px = np.fromfile(file=infile, dtype=np.float64, count=1)[0]
# np.fromfile(file=infile, dtype=np.int32, count=1)
return data.reshape((nx, ny))