1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/hdf5_sample.py

55 lines
1.5 KiB
Python

from pathlib import Path
from sys import argv
import numpy as np
from h5py import File
fraction = 0.01
num_steps = 60
file = Path(argv[1])
def main():
f = File(file)
f_out = File(file.with_suffix(".sampled.hdf5"), "w")
outpart = f_out.create_group("PartType1")
num_particles = f["Header"].attrs["NumPart_Total"][1]
print(num_particles)
chosen_particles = int(num_particles * fraction)
parttype1 = f["PartType1"]
steps = np.linspace(0, num_particles, num_steps)
column_data = {}
columns = ["Coordinates", "Velocities", "ParticleIDs", "Masses"]
original_data = {}
for column in columns:
original_data[column] = parttype1[column]
column_data[column] = []
for i in range(len(steps) - 1):
start = int(steps[i])
end = int(steps[i + 1])
print(start, end)
chosen_rows = np.random.choice(end - start, chosen_particles // num_steps)
for column in columns:
data = original_data[column][start:end]
column_data[column].append(data[chosen_rows])
for column in columns:
if column in {"ParticleIDs", "Masses"}:
all_data = np.hstack(column_data[column])
else:
all_data = np.vstack(column_data[column])
out_column = outpart.create_dataset(
column, data=all_data, compression="gzip" if column == "Masses" else None
)
print(len(out_column))
f_out.close()
if __name__ == "__main__":
main()