1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/halo_vis.py
2023-01-10 17:49:14 +01:00

181 lines
5.7 KiB
Python

from sys import argv
from typing import Tuple
import h5py
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from cic import cic_from_radius
from paths import base_dir, vis_datafile, has_1024_simulations
from read_vr_files import read_velo_halo_particles
from readfiles import read_file
from utils import waveforms
all_in_area = True
Coords = Tuple[float, float, float, float] # radius, X, Y, Z
def load_halo_data(waveform: str, resolution: int, halo_id: int, coords: Coords):
dir = base_dir / f"{waveform}_{resolution}_100"
df, meta = read_file(dir / "output_0004.hdf5")
df_halo, halo_lookup, unbound = read_velo_halo_particles(
dir, skip_halo_particle_ids=all_in_area
)
halo = df_halo.loc[halo_id] if halo_id else None
if coords:
radius, X, Y, Z = coords
else:
radius = halo["R_size"]
X = halo["Xc"]
Y = halo["Yc"]
Z = halo["Zc"]
coords: Coords = radius, X, Y, Z
if all_in_area:
df = df[df["X"].between(X - radius, X + radius)]
df = df[df["Y"].between(Y - radius, Y + radius)]
halo_particles = df[df["Z"].between(Z - radius, Z + radius)]
else:
halo_particle_ids = halo_lookup[halo_id]
del halo_lookup
del unbound
halo_particles = df.loc[list(halo_particle_ids)]
return halo, halo_particles, meta, coords
def get_comp_id(
ref_waveform: str,
reference_resolution: int,
comp_waveform: str,
comp_resolution: int,
):
return f"{ref_waveform}_{reference_resolution}_100_{comp_waveform}_{comp_resolution}_100_velo.csv"
def map_halo_id(
halo_id: int,
ref_waveform: str,
reference_resolution: int,
comp_waveform: str,
comp_resolution: int,
):
file = (
base_dir
/ "comparisons"
/ get_comp_id(
ref_waveform, reference_resolution, comp_waveform, comp_resolution
)
)
print("opening", file)
df = pd.read_csv(file)
mapping = {}
for index, line in df.iterrows():
mapping[int(line["ref_ID"])] = int(line["comp_ID"])
return mapping[halo_id]
def imsave(rho, file_name: str):
# ax.scatter(Xs, Ys)
# plt.show()
cmap = plt.cm.viridis
data = np.log(1.001 + rho)
norm = plt.Normalize(vmin=data.min(), vmax=data.max())
image = cmap(norm(data))
print(file_name)
plt.imsave(file_name, image)
def main():
resolutions = [128, 256, 512]
if has_1024_simulations:
resolutions.append(1024)
coords = {}
radius = None
if argv[1] == "box":
initial_halo_id = 0
first_halo = False
radius = 15
for wf in waveforms:
coords[wf] = (radius, 85, 85, 85)
else:
initial_halo_id = int(argv[1])
first_halo = True
for wf in waveforms:
coords[wf] = None
rhos = {}
ref_waveform = "shannon"
ref_resolution = 128
vmin = np.Inf
vmax = -np.Inf
with h5py.File(vis_datafile, "a") as vis_out:
key = str(initial_halo_id)
if key in vis_out:
del vis_out[key]
halo_group = vis_out.create_group(str(initial_halo_id))
# use shannon first for reference and as order doesn't matter here
for waveform in ["shannon", "DB2", "DB4", "DB8"]:
for resolution in resolutions:
if first_halo:
assert ref_resolution == resolution
assert ref_waveform == waveform
halo_id = initial_halo_id
first_halo = False
else:
if initial_halo_id:
halo_id = map_halo_id(
initial_halo_id,
ref_waveform,
ref_resolution,
waveform,
resolution,
)
else:
halo_id = None
halo, halo_particles, meta, image_coords = load_halo_data(
waveform, resolution, halo_id, coords[waveform]
)
if not radius:
radius = image_coords[0]
if not coords[waveform]:
tmp=list(image_coords)
tmp[0] = radius
coords[waveform] = tuple(tmp)
print(coords[waveform])
# print("mass", halo["Mvir"])
# print("sleep")
# sleep(100)
radius, X, Y, Z = coords[waveform]
rho, _ = cic_from_radius(
halo_particles.X.to_numpy(),
halo_particles.Y.to_numpy(),
600,
X,
Y,
radius,
periodic=False,
)
rhos[(waveform, resolution)] = rho
vmin = min(rho.min(), vmin)
vmax = max(rho.max(), vmax)
dataset_group = halo_group.create_group(f"{waveform}_{resolution}")
dataset_group.create_dataset(
"rho", data=rho, compression="gzip", compression_opts=5
)
dataset_group.create_dataset("coords", data=coords[waveform])
dataset_group.create_dataset("mass", data=meta.particle_mass)
if halo_id:
dataset_group.create_dataset("halo_id", data=halo_id)
# imsave(
# rho,
# f"out_halo{initial_halo_id}_{waveform}_{resolution}_{halo_id}.png",
# )
halo_group.create_dataset("vmin_vmax", data=[vmin, vmax])
if __name__ == "__main__":
main()