1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/find_box_length_for_pbh.py

131 lines
3.5 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Jan 13 17:19:55 2022
@author: Ben Melville
"""
import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
# Cosmological parameters:
n_s = 0.97
Omega_M_0 = 0.3099
Omega_Lambda_0 = 0.690021
Omega_R_0 = 0.0
h = 0.67742
R = 40 # for R=40, sigma is only 0.113, R>40 yields nan in one integration
z = 0
prop_factor = 289.98204077151246 # found from running R=8, z=0, requiring that sigma=0.8 should hold
# L_box / N_res = 0.009235859375 #for 10^5 M_sun particle mass -> 4096 almost enough to go to z=0
# L_box / N_res = 0.019897945879081797 #for 10^6 M_sun particle mass -> 2048 just enough to go to z=0
def E_squared(z, Omega_Lambda_0, Omega_M_0, Omega_R_0):
Omega_0 = Omega_Lambda_0 + Omega_M_0 + Omega_R_0
return (
Omega_Lambda_0
+ (1 - Omega_0) * (1 + z) ** 2
+ Omega_M_0 * (1 + z) ** 3
+ Omega_R_0 * (1 + z) ** 4
)
def Omega_M(z, Omega_Lambda_0, Omega_M_0, Omega_R_0):
return Omega_M_0 * (1 + z) ** 3 / E_squared(z, Omega_Lambda_0, Omega_M_0, Omega_R_0)
def Omega_Lambda(z, Omega_Lambda_0, Omega_M_0, Omega_R_0):
return Omega_Lambda_0 / E_squared(z, Omega_Lambda_0, Omega_M_0, Omega_R_0)
def g(z, Omega_Lambda_0, Omega_M_0, Omega_R_0):
Omega_M_local = Omega_M(z, Omega_Lambda_0, Omega_M_0, Omega_R_0)
Omega_Lambda_local = Omega_Lambda(z, Omega_Lambda_0, Omega_M_0, Omega_R_0)
return (
5
* Omega_M_local
/ (
2
* (
Omega_M_local ** (4 / 7)
- Omega_Lambda_local
+ (1 + Omega_M_local / 2) * (1 + Omega_Lambda_local / 70)
)
)
)
def D(z, Omega_Lambda_0, Omega_M_0, Omega_R_0):
return g(z, Omega_Lambda_0, Omega_M_0, Omega_R_0) / (1 + z)
def keq(Omega_M_0, h):
return Omega_M_0 * h ** 2
def T(k, k_eq):
if k < k_eq:
return 1
elif k >= k_eq:
return np.log(k / k_eq) / (k / k_eq) ** 2
def P_i(k, n_s):
return k ** n_s
def P(k, z, n_s, Omega_M_0, Omega_Lambda_0, Omega_R_0, h):
k_eq = keq(Omega_M_0, h)
return (
P_i(k, n_s) * T(k, k_eq) ** 2 * D(z, Omega_Lambda_0, Omega_M_0, Omega_R_0) ** 2
)
def W_R(k, R):
argument = k * R
return 3 / argument ** 2 * (np.sin(argument) - argument * np.cos(argument))
def integrand(k, z, R, n_s, Omega_M_0, Omega_Lambda_0, Omega_R_0, h):
return P(k, z, n_s, Omega_M_0, Omega_Lambda_0, Omega_R_0, h) * W_R(k, R) * k ** 2
k_lower = 0.0
k_eq = keq(Omega_M_0, h)
k_higher = 100 * k_eq
integral, error = integrate.quad(
integrand,
k_lower,
k_eq,
args=(z, R, n_s, Omega_M_0, Omega_Lambda_0, Omega_R_0, h),
limit=100,
)
integral_2, error_2 = integrate.quad(
integrand,
k_eq,
k_higher,
args=(z, R, n_s, Omega_M_0, Omega_Lambda_0, Omega_R_0, h),
limit=100,
)
sigma_squared = (integral + integral_2) / (2 * np.pi ** 2)
sigma = np.sqrt(sigma_squared) * prop_factor
print(sigma)
# k_plot = np.logspace(np.log10(k_lower), np.log10(k_eq), 1000)
# T_plot = [T(k, k_eq) for k in k_plot]
# k_plot_2 = np.logspace(np.log10(k_eq), np.log10(k_higher), 1000)
# T_plot_2 = [T(k, k_eq) for k in k_plot_2]
# plt.title("Linear transfer function")
# plt.xlabel("log(k)")
# plt.ylabel("log(T(k))")
# plt.loglog(k_plot, T_plot, ".", markersize=5)
# plt.loglog(k_plot_2, T_plot_2, ".", markersize=5)