1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/auriga_comparison.py

518 lines
20 KiB
Python

import json
import pickle
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
from pprint import pprint
from subprocess import run
from sys import argv
from typing import List, Tuple
import h5py
import numpy as np
import pandas as pd
import pynbody
from matplotlib import pyplot as plt
from matplotlib.axes import Axes
from matplotlib.colors import LogNorm
from matplotlib.figure import Figure
from matplotlib.image import AxesImage
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar
from numpy import log10
from pynbody.array import SimArray
from pynbody.snapshot import FamilySubSnap
from pynbody.snapshot.ramses import RamsesSnap
from scipy import constants
from cache import HDFCache
from cic import cic_from_radius, cic_range
from find_center import find_center
from halo_mass_profile import halo_mass_profile, property_profile
from nfw import fit_nfw
from paths import auriga_dir, richings_dir, auriga_dir_new, richings_dir_new
from ramses import load_ramses_data, get_slice_argument, load_slice_data
from read_vr_files import read_velo_halos
from readfiles import read_file, read_halo_file, ParticlesMeta
from slices import create_2d_slice, filter_3d
from utils import read_swift_config, figsize_from_page_fraction
class Mode(Enum):
richings = "richings"
auriga6 = "auriga"
mode = Mode(argv[1])
cache = HDFCache(Path("auriga_cache.hdf5"))
def dir_name_to_parameter(dir_name: str):
return map(
int,
dir_name.lstrip("auriga6_halo")
.lstrip("auriga6_music20_")
.lstrip("richings21_")
.lstrip("bary_")
.lstrip("ramses_")
.split("_"),
)
def levelmax_to_softening_length(levelmax: int) -> float:
box_size = 100
return box_size / 30 / 2 ** levelmax
def main():
fig1: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax1: Axes = fig1.gca()
fig2: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax2: Axes = fig2.gca()
axs_baryon: List[List[Axes]]
fig4: Figure
fig4, axs_baryon = plt.subplots(
nrows=2, ncols=4,
sharex="all", sharey="all",
figsize=figsize_from_page_fraction(columns=2, height_to_width=0.55),
layout='constrained'
)
fig5: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax5: Axes = fig5.gca()
fig6: Figure = plt.figure(figsize=figsize_from_page_fraction())
ax6: Axes = fig6.gca()
baryon_plot_counter = 0
vminmax = {}
extents = []
for ax in [ax1, ax2]:
ax.set_xlabel(r"R [Mpc]")
ax1.set_ylabel(r"M [$10^{10} \mathrm{M}_\odot$]")
ax2.set_ylabel("density [$\\frac{10^{10} \\mathrm{M}_\\odot}{Mpc^3}$]")
part_numbers = []
reference_file = Path(f"auriga_reference_{mode.value}.pickle")
centers = {}
halo_props = {
"R_200crit": {},
"Mass_200crit": {},
"cNFW_200crit": {},
"FOF_Mass": {},
"FOF_Size": {},
}
halo_props["Mass_200crit"]["Au6_paper"] = 104.39
halo_props["R_200crit"]["Au6_paper"] = 213.83 / 1000
@dataclass
class Result:
title: str
rho: np.ndarray
levels: Tuple[int, int, int]
images = []
vmin = np.Inf
vmax = -np.Inf
root_dir = auriga_dir if mode == Mode.auriga6 else richings_dir
if True:
root_dir = auriga_dir_new if mode == Mode.auriga6 else richings_dir_new
i = 0
mapping = {}
for dir in sorted(root_dir.glob("*")):
dir = dir.resolve()
print("----------------------------")
if not dir.is_dir() or "bak" in dir.name:
continue
is_ramses = "ramses" in dir.name
has_baryons = "bary" in dir.name or is_ramses
is_by_adrian = "arj" in dir.name
is_resim = dir.name[0].isdigit() or is_by_adrian
print(dir.name)
if not is_by_adrian:
levelmin, levelmin_TF, levelmax = dir_name_to_parameter(dir.name)
print(levelmin, levelmin_TF, levelmax)
# if not is_resim:
# continue
# if levelmax < 12 and not is_by_adrian:
# continue
if mode == Mode.auriga6:
print("sdfds")
if (levelmin, levelmin_TF, levelmax) == (7, 9, 9):
print("Aaaa")
continue
elif mode == Mode.richings:
if not has_baryons:
continue
# if levelmax != 11:
# continue
# if not is_ramses:
# continue
if dir.name in ["bary_ramses_7_10_11"]:
continue
input_file = dir / "output_0007.hdf5"
print(input_file)
if mode == Mode.richings and not is_resim:
input_file = dir / "output_0004.hdf5"
if is_by_adrian or is_ramses:
input_file = dir / "output_0000.hdf5"
softening_length = None
else:
try:
swift_conf = read_swift_config(dir)
# print_wall_time(dir)
except FileNotFoundError:
print(f"file not found: {dir}")
continue
gravity_conf = swift_conf["Gravity"]
softening_length = gravity_conf["comoving_DM_softening"]
assert softening_length == gravity_conf["max_physical_DM_softening"]
if "max_physical_baryon_softening" in gravity_conf:
assert softening_length == gravity_conf["max_physical_baryon_softening"]
assert softening_length == gravity_conf["comoving_baryon_softening"]
ideal_softening_length = levelmax_to_softening_length(levelmax)
if not np.isclose(softening_length, ideal_softening_length):
if softening_length < ideal_softening_length:
print(
f"softening length smaller than calculated: {softening_length}<{ideal_softening_length} ({levelmax=})")
else:
raise ValueError(
f"softening length for levelmax {levelmax} should be {ideal_softening_length} "
f"but is {softening_length}"
)
print(input_file)
if mode == Mode.richings and is_by_adrian:
h = 0.6777
with h5py.File(dir / "Richings_object_z0.h5") as f:
df = pd.DataFrame(f["Coordinates"][:] / h, columns=["X", "Y", "Z"])
particles_meta = ParticlesMeta(particle_mass=1.1503e7 / 1e10)
center = np.array([60.7, 29, 64]) / h
softening_length = None
elif "ramses" in dir.name:
h = 0.6777
hr_coordinates, particles_meta, center = load_ramses_data(dir / "output_00009")
df = pd.DataFrame(hr_coordinates, columns=["X", "Y", "Z"])
softening_length = None
else:
df, particles_meta = read_file(input_file)
df_halos = read_halo_file(input_file.with_name("fof_" + input_file.name))
halo_id = 1
while True:
particles_in_halo = df.loc[df["FOFGroupIDs"] == halo_id]
if len(particles_in_halo) > 1:
break
halo_id += 1
halo = df_halos.loc[halo_id]
part_numbers.append(len(df) * particles_meta.particle_mass)
# halo = halos.loc[1]
center = np.array([halo.X, halo.Y, halo.Z])
halo_props["FOF_Mass"][dir.name] = halo["Masses"]
halo_props["FOF_Size"][dir.name] = halo["Sizes"]
if mode == Mode.auriga6:
vr_halo = read_velo_halos(dir, veloname="velo_out").loc[1]
print(vr_halo["R_200crit"])
halo_props["R_200crit"][dir.name] = vr_halo["R_200crit"]
halo_props["Mass_200crit"][dir.name] = vr_halo["Mass_200crit"]
halo_props["cNFW_200crit"][dir.name] = vr_halo["cNFW_200crit"]
center2 = np.array([vr_halo.X, vr_halo.Y, vr_halo.Z])
print("center-diff", center2 - center)
print("center-diff", center)
print("center-diff", center2)
center = find_center(df, center)
log_radial_bins, bin_masses, bin_densities, center = halo_mass_profile(
df[["X", "Y", "Z"]].to_numpy(), center, particles_meta, plot=False,
num_bins=100, rmin=0.002, rmax=6.5
)
i_min_border = np.argmax(
0.01 < log_radial_bins
) # first bin outside of specific radius
i_max_border = np.argmax(1.5 < log_radial_bins)
popt = fit_nfw(
log_radial_bins[i_min_border:i_max_border],
bin_densities[i_min_border:i_max_border],
) # = rho_0, r_s
print(popt)
# # Plot NFW profile
# ax.loglog(
# log_radial_bins[i_min_border:i_max_border],
# nfw(log_radial_bins[i_min_border:i_max_border], *popt),
# linestyle="dotted"
# )
centers[dir.name] = center
if is_by_adrian:
with reference_file.open("wb") as f:
pickle.dump([log_radial_bins, bin_masses, bin_densities], f)
if is_by_adrian:
label = "Reference"
else:
label = f"({levelmin}, {levelmin_TF}, {levelmax})"
ax1.loglog(log_radial_bins[:-1], bin_masses, label=label, c=f"C{i}")
ax2.loglog(log_radial_bins[:-1], bin_densities, label=label, c=f"C{i}")
mapping[i] = dir.name
if reference_file.exists() and not is_by_adrian:
with reference_file.open("rb") as f:
data: List[np.ndarray] = pickle.load(f)
ref_log_radial_bins, ref_bin_masses, ref_bin_densities = data
mass_deviation: np.ndarray = np.abs(bin_masses - ref_bin_masses)
density_deviation: np.ndarray = np.abs(bin_densities - ref_bin_densities)
ax1.loglog(log_radial_bins[:-1], mass_deviation, c=f"C{i}", linestyle="dotted")
ax2.loglog(
log_radial_bins[:-1], density_deviation, c=f"C{i}", linestyle="dotted"
)
accuracy = mass_deviation / ref_bin_masses
print(accuracy)
print("mean accuracy", accuracy.mean())
if softening_length:
for ax in [ax1, ax2]:
ax.axvline(4 * softening_length, color=f"C{i}", linestyle="dotted")
# for ax in [ax1, ax2]:
# ax.axvline(vr_halo.Rvir, color=f"C{i}", linestyle="dashed")
coords = df[["X", "Y", "Z"]].to_numpy()
# shift: (-6, 0, -12)
# if not is_by_adrian:
# xshift = Xc - Xc_adrian
# yshift = Yc - Yc_adrian
# zshift = Zc - Zc_adrian
# print("shift", xshift, yshift, zshift)
coords_centered = coords - center
rho, extent = cic_from_radius(coords_centered[::, 0], coords_centered[::, 2], 500, 0, 0, 1.5, periodic=False)
vmin = min(vmin, rho.min())
vmax = max(vmax, rho.max())
res = Result(
rho=rho,
title=f"levelmin={levelmin}, levelmin_TF={levelmin_TF}, levelmax={levelmax}" if not is_by_adrian else "Reference",
levels=(levelmin, levelmin_TF, levelmax) if not is_by_adrian else (100, 100, 100),
)
res.title = res.title + "\n" + dir.name
images.append(res)
i += 1
if has_baryons:
interpolation_method = "nearest" # "linear"
bary_file = dir / "output_00009" if is_ramses else input_file
if is_ramses:
s: RamsesSnap = pynbody.load(str(bary_file))
gas_data: FamilySubSnap = s.gas
temperature_array: SimArray = gas_data["temp"]
p_array: SimArray = gas_data["p"].in_units("1e10 Msol Mpc^-3 km^2 s^-2")
rho_array: SimArray = gas_data["rho"].in_units("1e10 Msol Mpc^-3")
coord_array: SimArray = gas_data["pos"].in_units("Mpc")
mass_array = np.asarray(gas_data["mass"].in_units("1e10 Msol"))
bary_coords = np.asarray(coord_array)
bary_properties = {
"Temperatures": np.asarray(temperature_array.in_units("K")),
"Pressures": np.asarray(p_array),
"Densities": np.asarray(rho_array),
"Entropies": np.asarray(log10(p_array / rho_array ** (5 / 3))),
}
else:
with h5py.File(input_file) as f:
pt0 = f["PartType0"]
bary_coords = pt0["Coordinates"][:]
mass_array = pt0["Masses"][:]
bary_properties = {
"InternalEnergies": pt0["InternalEnergies"][:],
"Densities": pt0["Densities"][:],
"Pressures": pt0["Pressures"][:],
# "Entropies": log10(pt0["Densities"][:] / pt0["Densities"][:] ** (5 / 3)),
"Entropies": pt0["Entropies"][:]
}
bary_properties["Temperatures"] = bary_properties["InternalEnergies"]
radius = 1.9
resolution = 500
# xrange[0], xrange[-1], yrange[0], yrange[-1]
extent = [center[0] - radius, center[0] + radius,
center[1] - radius, center[1] + radius]
extents.append(extent)
# extent = [42, 62, 50, 70]
ramses_done = False
labels = {
"cic": "$\\rho_{\\mathrm{DM}}$ [$10^{10}\\mathrm{M}_\\odot \\mathrm{Mpc}^{-3}$]",
"Densities": "$\\rho_{\\mathrm{gas}}$ [$10^{10}\\mathrm{M}_\\odot \\mathrm{Mpc}^{-3}$]",
"Entropies": "$s$",
"Temperatures": "$T$ [K]",
}
for ii, property in enumerate(["cic", "Densities", "Entropies", "Temperatures"]):
print("property:", property)
key = f"grid_{resolution}_{property}_{interpolation_method}_{radius}"
cached_grid = cache.get(key, str(bary_file))
if cached_grid is not None:
grid = cached_grid
else:
print("grid not yet cached, calculating now")
if property == "cic":
coords_in_box = filter_3d(coords, extent, zlimit=(center[2] - .1, center[2] + .1))
rho, _ = cic_range(coords_in_box[::, 0], coords_in_box[::, 1], resolution, *extent,
periodic=False)
grid = 1.1 + rho.T
else:
if not is_ramses:
grid = create_2d_slice(center, coords=bary_coords,
resolution=resolution,
property_name=property,
property_data=bary_properties[property],
extent=extent, method=interpolation_method)
else:
frac_center = center / 100
frac_extent = np.array(extent) / 100
print(frac_extent)
print(frac_center)
args, imager_dir = get_slice_argument(
frac_extent, frac_center,
bary_file, interpolation_method,
depth=.001
)
print(" ".join(args))
if not ramses_done:
run(args, cwd=imager_dir)
ramses_done = True
property_map = {
"Densities": "rhomap",
"Entropies": "Smap",
"Temperatures": "Tmap"
}
fname = imager_dir / f"snapshot_{property_map[property]}_zproj_zobs-0p00.bin"
grid = load_slice_data(fname).T
cache.set(key, grid, str(bary_file), compressed=True)
if property == "Densities" and is_ramses:
# convert g/cm^3 to 1e10 Msol Mpc^-3
solar_mass_in_gram = 1.988e33
mpc_in_cm = constants.parsec * constants.mega * 100
grid = np.asarray(grid)
grid *= (mpc_in_cm ** 3 / solar_mass_in_gram / 1e10)
ax_baryon = axs_baryon[baryon_plot_counter][ii]
if property in vminmax:
minmax = vminmax[property]
else:
minmax = np.min(grid), np.max(grid)
vminmax[property] = minmax
print("minmax", minmax)
if is_ramses:
np.save(f"/home/lukas/tmp/ramses_grid_{property}", grid)
img: AxesImage = ax_baryon.imshow(
grid,
norm=LogNorm(vmin=minmax[0], vmax=minmax[1]),
interpolation="none",
origin="lower",
extent=extent,
)
if baryon_plot_counter == 0:
fig4.colorbar(img, ax=ax_baryon, location="top", label=labels[property])
# ax_baryon.set_title(property)
# ax_baryon.set_xlabel("X")
# ax_baryon.set_ylabel("Y")
ax_baryon.set_aspect("equal")
# exit()
baryon_plot_counter += 1
continue
r, prof = property_profile(bary_coords, center, mass_array, bary_properties, num_bins=100, rmin=0.002,
rmax=6.5)
integrator_name = "Ramses" if is_ramses else "Swift"
label = f"{integrator_name} {levelmin}, {levelmin_TF}, {levelmax}"
ax5.set_title("Densities")
ax6.set_title("Pressures")
ax5.loglog(r[1:], prof["Densities"], label=label)
ax6.loglog(r[1:], prof["Pressures"], label=label)
if mode==Mode.richings:
extents = np.asarray(extents)
print(extents)
global_xlim = extents[:, 0].max(), extents[:, 1].min()
global_ylim = extents[:, 2].max(), extents[:, 3].min()
for ax in axs_baryon.flatten():
ax.set_xlim(global_xlim)
ax.set_ylim(global_ylim)
ax.set_xticks([])
ax.set_yticks([])
scalebar = AnchoredSizeBar(
ax.transData,
1,
"1 Mpc",
"lower left",
# pad=0.1,
color="white",
frameon=False,
# size_vertical=1
)
ax.add_artist(scalebar)
fig3: Figure = plt.figure(
# just a bit more than 2/3 so that the two rows don't overlap
figsize=figsize_from_page_fraction(columns=2, height_to_width=33 / 48)
)
axes: List[Axes] = fig3.subplots(2, 3, sharex="all", sharey="all").flatten()
# images.sort(key=lambda r: r.levels, reverse=True)
for result, ax in zip(images, axes):
data = 1.1 + result.rho
vmin_scaled = 1.1 + vmin
vmax_scaled = 1.1 + vmax
img = ax.imshow(
data.T,
norm=LogNorm(vmin=vmin_scaled, vmax=vmax_scaled),
extent=extent,
origin="lower",
cmap="Greys",
interpolation="none"
)
ax.text(
0.5,
0.95,
result.title,
horizontalalignment="center",
verticalalignment="top",
transform=ax.transAxes,
)
for ax in [ax1, ax2, ax5, ax6]:
ax.legend()
for fig in [fig1, fig2, fig3, fig5, fig6]:
fig.tight_layout()
fig.subplots_adjust(wspace=0, hspace=0)
axs_baryon[0][0].set_ylabel("Swift")
axs_baryon[1][0].set_ylabel("Ramses")
fig1.savefig(Path(f"~/tmp/{mode.value}1.pdf").expanduser())
fig2.savefig(Path(f"~/tmp/{mode.value}2.pdf").expanduser())
fig3.savefig(Path(f"~/tmp/{mode.value}3.pdf").expanduser())
fig4.savefig(Path(f"~/tmp/{mode.value}4.pdf").expanduser())
pprint(centers)
if mode == Mode.auriga6:
with open("halo_props.json","w") as f:
json.dump(halo_props,f, indent=4)
plt.show()
print(part_numbers)
print(mapping)
if __name__ == '__main__':
main()