1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00
halo_comparison/HilbertCurvesIndexing.py

181 lines
5.2 KiB
Python

"""
originally created by Oliver Hahn
in HilbertCurvesIndexing.ipynb
"""
from pathlib import Path
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import SeedSequence, Generator, PCG64
# dictionary containing the first order hilbert curves
from utils import figsize_from_page_fraction
# from matplotlib import rc
# # rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
# ## for Palatino and other serif fonts use:
# rc('font',**{'family':'serif','serif':['Times New Roman']})
# rc('text', usetex=True)
# rc('axes', titlesize=24)
# rc('axes', labelsize=20)
# rc('axes', axisbelow=False)
# rc('lines',linewidth=2)
# # lines.markersize : 10
# rc('xtick', labelsize=16)
# rc('xtick.major',size=10)
# rc('xtick.minor',size=5)
# rc('xtick',direction='in')
# rc('ytick', labelsize=16)
# rc('ytick.major',size=10)
# rc('ytick.minor',size=5)
# rc('ytick',direction='in')
# rc('legend',fontsize='x-large')
base_shape = {
"u": [np.array([0, 1]), np.array([1, 0]), np.array([0, -1])],
"d": [np.array([0, -1]), np.array([-1, 0]), np.array([0, 1])],
"r": [np.array([1, 0]), np.array([0, 1]), np.array([-1, 0])],
"l": [np.array([-1, 0]), np.array([0, -1]), np.array([1, 0])],
}
def hilbert_curve(order, orientation):
"""
Recursively creates the structure for a hilbert curve of given order
"""
if order > 1:
if orientation == "u":
return (
hilbert_curve(order - 1, "r")
+ [np.array([0, 1])]
+ hilbert_curve(order - 1, "u")
+ [np.array([1, 0])]
+ hilbert_curve(order - 1, "u")
+ [np.array([0, -1])]
+ hilbert_curve(order - 1, "l")
)
elif orientation == "d":
return (
hilbert_curve(order - 1, "l")
+ [np.array([0, -1])]
+ hilbert_curve(order - 1, "d")
+ [np.array([-1, 0])]
+ hilbert_curve(order - 1, "d")
+ [np.array([0, 1])]
+ hilbert_curve(order - 1, "r")
)
elif orientation == "r":
return (
hilbert_curve(order - 1, "u")
+ [np.array([1, 0])]
+ hilbert_curve(order - 1, "r")
+ [np.array([0, 1])]
+ hilbert_curve(order - 1, "r")
+ [np.array([-1, 0])]
+ hilbert_curve(order - 1, "d")
)
else:
return (
hilbert_curve(order - 1, "d")
+ [np.array([-1, 0])]
+ hilbert_curve(order - 1, "l")
+ [np.array([0, -1])]
+ hilbert_curve(order - 1, "l")
+ [np.array([1, 0])]
+ hilbert_curve(order - 1, "u")
)
else:
return base_shape[orientation]
# test the functions
# if __name__ == '__main__':
# order = 8
# curve = hilbert_curve(order, 'u')
# curve = np.array(curve) * 4
# cumulative_curve = np.array([np.sum(curve[:i], 0) for i in range(len(curve)+1)])
# # plot curve using plt
# plt.plot(cumulative_curve[:, 0], cumulative_curve[:, 1])
# draw curve using turtle graphics
# tt.setup(1920, 1000)
# tt.pu()
# tt.goto(-950, -490)
# tt.pd()
# tt.speed(0)
# for item in curve:
# tt.goto(tt.pos()[0] + item[0], tt.pos()[1] + item[1])
# tt.done()
order = 6
curve = hilbert_curve(order, "u")
curve = np.array(curve) * 4
cumulative_curve_int = np.array([np.sum(curve[:i], 0) for i in range(len(curve) + 1)])
cumulative_curve = (
np.array([np.sum(curve[:i], 0) for i in range(len(curve) + 1)]) + 2
) / 2 ** (order + 2)
# plot curve using plt
N = 2 ** (2 * order)
sublevel = order - 4
cmap = cm.get_cmap("jet")
fig = plt.figure(figsize=figsize_from_page_fraction(height_to_width=1))
t = {}
sublevel = 7
for i in range(2 ** (2 * sublevel)):
il = i * N // (2 ** (2 * sublevel))
ir = (i + 1) * N // 2 ** (2 * sublevel)
plt.plot(
cumulative_curve[il : ir + 1, 0],
cumulative_curve[il : ir + 1, 1],
lw=0.5,
c=cmap(i / 2 ** (2 * sublevel)),
)
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.tight_layout()
plt.savefig(Path(f"~/tmp/hilbert_indexcolor.eps").expanduser())
order = 6
curve = hilbert_curve(order, "u")
curve = np.array(curve) * 4
cumulative_curve_int = np.array([np.sum(curve[:i], 0) for i in range(len(curve) + 1)])
cumulative_curve = (
np.array([np.sum(curve[:i], 0) for i in range(len(curve) + 1)]) + 2
) / 2 ** (order + 2)
# plot curve using plt
N = 2 ** (2 * order)
sublevel = order - 4
cmap = cm.get_cmap("jet")
s = 10 # arbitrary lenght of each sequence drawn for every point
fig = plt.figure(figsize=figsize_from_page_fraction(height_to_width=1))
t = {}
sublevel = 7
for i in range(2 ** (2 * sublevel)):
pcg = PCG64(1234)
pcg = pcg.advance(i * s)
rng = Generator(pcg)
il = i * N // (2 ** (2 * sublevel))
ir = (i + 1) * N // 2 ** (2 * sublevel)
random_value = rng.random()
plt.plot(
cumulative_curve[il : ir + 1, 0],
cumulative_curve[il : ir + 1, 1],
lw=0.5,
c=cmap(random_value),
)
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.tight_layout()
plt.savefig(Path(f"~/tmp/hilbert_indexcolor_scrambled.eps").expanduser())
plt.show()