1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00

read rockstar output

This commit is contained in:
Lukas Winkler 2024-04-24 14:33:12 +02:00
parent 4d46cec6fc
commit d5c39e9ffb
Signed by: lukas
GPG key ID: 54DE4D798D244853

66
rockstar.py Normal file
View file

@ -0,0 +1,66 @@
from pathlib import Path
import pandas as pd
h = 0.6777
def make_names_unique(names: list[str]) -> list[str]:
"""
https://stackoverflow.com/a/30650847
"""
newlist = []
for i, v in enumerate(names):
count = names[:i].count(v)
newlist.append(v + f"_{count + 1}" if count > 0 else v)
return newlist
def largest_halo_properties(dir: Path):
file = dir / "halos_127.0.ascii"
if not file.exists():
file = dir / "halos_0.0.ascii"
with file.open() as f:
first_line = next(f)
headers = first_line.lstrip("#").strip().split()
headers = make_names_unique(headers)
df = pd.read_csv(file, sep=" ", names=headers, comment="#")
df.sort_values(by=["num_p"], inplace=True, ascending=False)
df.set_index("id", inplace=True)
df["r200c_kpc"] = df.r200c / h
df["m200c_msun"] = df.m200c / h / 1e10
df["m500c_msun"] = df.m500c / h / 1e10
df["m2500c_msun"] = df.m2500c / h / 1e10
df["mbound_200c_msun"] = df.mbound_200c / h / 1e10
df["Rs_kpc"] = df.Rs / h
df["con"] = df.r200c_kpc / df.Rs_kpc
main_halo = df.iloc[0]
print(file)
print(f"r200c_kpc: {main_halo.r200c_kpc:.1f}")
print(f"m200c_msun: {main_halo.m200c_msun:.2f}")
print(f"m500c_msun: {main_halo.m500c_msun:.2f}")
print(f"m2500c_msun: {main_halo.m2500c_msun:.2f}")
print(f"mbound_200c_msun: {main_halo.mbound_200c_msun:.2f}")
print(f"Rs_kpc: {main_halo.Rs_kpc:.2f}")
print(f"con: {main_halo.con:.3f}")
return main_halo
if __name__ == '__main__':
data = {}
dir = Path("/home/lukas/cosmos_data/auriga-resim/data/auriga6/7_8_10")
data["7_8_10"] = largest_halo_properties(dir)
dir = Path("/home/lukas/cosmos_data/auriga-resim/data/auriga6/7_10_10")
data["7_10_10"] = largest_halo_properties(dir)
dir = Path("/home/lukas/cosmos_data/auriga-resim/data/auriga6/7_10_12")
data["7_10_12"] = largest_halo_properties(dir)
dir = Path("/home/lukas/cosmos_data/auriga-resim/data/auriga6/adrian_ref_new")
data["ref"] = largest_halo_properties(dir)
df = pd.DataFrame(data).T
print(df)
df.T.to_csv(Path("~/tmp/halo_comp.csv"))