1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00

better comparisons of gas simulations

This commit is contained in:
Lukas Winkler 2022-08-23 17:29:44 +02:00
parent e2cc1e651a
commit aa7c541c25
Signed by: lukas
GPG key ID: 54DE4D798D244853
3 changed files with 67 additions and 52 deletions

View file

@ -13,7 +13,7 @@ from matplotlib.axes import Axes
from matplotlib.colors import LogNorm
from matplotlib.figure import Figure
from cic import cic_from_radius
from cic import cic_from_radius, cic_range
from halo_mass_profile import halo_mass_profile
from nfw import fit_nfw
from paths import auriga_dir, richings_dir
@ -168,9 +168,6 @@ for dir in sorted(root_dir.glob("*")):
# linestyle="dotted"
# )
if has_baryons:
create_2d_slice(input_file, center, property="InternalEnergies")
centers[dir.name] = center
if is_by_adrian:
with reference_file.open("wb") as f:
@ -230,6 +227,35 @@ for dir in sorted(root_dir.glob("*")):
)
)
i += 1
if has_baryons:
fig3, axs_baryon = plt.subplots(nrows=1, ncols=5, sharex="all", sharey="all", figsize=(10, 4))
extent = [46, 52, 54, 60] # xrange[0], xrange[-1], yrange[0], yrange[-1]
for ii, property in enumerate(["cic", "Densities", "Entropies", "InternalEnergies", "Temperatures"]):
print(property)
if property == "cic":
grid, _ = cic_range(X + center[0], Y + center[1], 1000, *extent, periodic=False)
else:
grid = create_2d_slice(input_file, center, property=property, extent=extent)
print("minmax", grid.min(), grid.max())
assert grid.min() != grid.max()
ax_baryon: Axes = axs_baryon[ii]
img = ax_baryon.imshow(
grid,
norm=LogNorm(),
interpolation="none",
origin="lower",
extent=extent,
)
ax_baryon.set_title(property)
# ax_baryon.set_xlabel("X")
# ax_baryon.set_ylabel("Y")
ax_baryon.set_aspect("equal")
fig3.suptitle(input_file.parent.stem)
fig3.tight_layout()
fig3.savefig(Path("~/tmp/slice.png").expanduser(), dpi=300)
plt.show()
# plot_cic(
# rho, extent,
# title=str(dir.name)

View file

@ -1,5 +1,5 @@
from pathlib import Path
from typing import List
from typing import List, Tuple
import h5py
import matplotlib.pyplot as plt
@ -11,56 +11,46 @@ from temperatures import calculate_T
from utils import create_figure
def filter_3d(
coords: np.ndarray, data: np.ndarray,
extent: List[float]
) -> Tuple[np.ndarray, np.ndarray]:
filter = (
(extent[0] < coords[::, 0]) &
(coords[::, 0] < extent[1]) &
(extent[2] < coords[::, 1]) &
(coords[::, 1] < extent[3])
)
print("before", coords.shape)
data = data[filter]
coords = coords[filter]
print("after", coords.shape)
return coords, data
def create_2d_slice(
input_file: Path, center: List[float], property: str, axis="Z", thickness=3, method="nearest"
):
axis_names = ["X", "Y", "Z"]
cut_axis = axis_names.index(axis)
limits = {
"X": (46, 52),
"Y": (54, 60),
"Z": (center[cut_axis] - 10, center[cut_axis] + 10)
}
input_file: Path, center: List[float], extent,
property="InternalEnergies", method="nearest"
) -> np.ndarray:
cut_axis = 2 # Z
with h5py.File(input_file) as f:
pt0 = f["PartType0"]
coords = pt0["Coordinates"][:]
energies = pt0["InternalEnergies"][:]
entropies = pt0["Entropies"][:]
data = pt0[property if property != "Temperatures" else "InternalEnergies"][:]
print((center[cut_axis] - thickness < coords[::, cut_axis]).shape)
# in_slice = (center[cut_axis] - thickness < coords[::, cut_axis]) & (
# coords[::, cut_axis] < center[cut_axis] + thickness)
# print("got slice")
# coords_in_slice = coords[in_slice]
# data_in_slice = data[in_slice]
filter = (
(limits["X"][0] < coords[::, 0]) &
(coords[::, 0] < limits["X"][1]) &
coords, data = filter_3d(coords, data, extent)
if property == "Temperatures":
print("calculating temperatures")
data = np.array([calculate_T(u) for u in data])
(limits["Y"][0] < coords[::, 1]) &
(coords[::, 1] < limits["Y"][1]) &
(limits["Z"][0] < coords[::, 2]) &
(coords[::, 2] < limits["Z"][1])
)
print("before", coords.shape)
energies = energies[filter]
entropies = entropies[filter]
coords = coords[filter]
print("after", coords.shape)
print("calculating temperatures")
temperatures = np.array([calculate_T(u) for u in energies])
other_axis = {"X": ("Y", "Z"), "Y": ("X", "Z"), "Z": ("X", "Y")}
x_axis_label, y_axis_label = other_axis[axis]
x_axis = axis_names.index(x_axis_label)
y_axis = axis_names.index(y_axis_label)
xrange = np.linspace(coords[::, x_axis].min(), coords[::, x_axis].max(), 1000)
yrange = np.linspace(coords[::, y_axis].min(), coords[::, y_axis].max(), 1000)
xrange = np.linspace(extent[0],extent[1], 1000)
yrange = np.linspace(extent[2],extent[3], 1000)
gx, gy, gz = np.meshgrid(xrange, yrange, center[cut_axis])
print("interpolating")
grid = griddata(coords, temperatures, (gx, gy, gz), method=method)[::, ::, 0]
grid = griddata(coords, data, (gx, gy, gz), method=method)[::, ::, 0]
return grid
print(grid.shape)
# stats, x_edge, y_edge, _ = binned_statistic_2d(
# coords_in_slice[::, x_axis],
@ -85,6 +75,4 @@ def create_2d_slice(
ax.set_aspect("equal")
fig.colorbar(img, label="Temperatures")
fig.tight_layout()
fig.savefig(Path("~/tmp/slice.png").expanduser(), dpi=300)
plt.show()
exit()

View file

@ -16,9 +16,6 @@ const_boltzmann_k_cgs = 1.380649e-16
const_proton_mass = const_proton_mass_cgs / UnitMass_in_cgs
const_boltzmann_k = const_boltzmann_k_cgs / UnitMass_in_cgs / UnitLength_in_cgs ** 2 * (UnitTime_in_cgs ** 2)
print(const_proton_mass)
print(const_boltzmann_k)
print()
@njit
@ -33,7 +30,11 @@ def calculate_T(u):
else:
return T_transition
if __name__ == "__main__":
print(const_proton_mass)
print(const_boltzmann_k)
print()
internal_energies = [6.3726251e+02, 7.7903375e+02, 1.7425287e+04, 6.4113910e+04, 3.8831848e+04,
1.1073163e+03, 7.7394878e+03, 7.5230023e+04, 9.1036992e+04, 2.4060946e+00]