1
0
Fork 0
mirror of https://github.com/Findus23/halo_comparison.git synced 2024-09-13 09:03:49 +02:00

auriga comparison improvements

This commit is contained in:
Lukas Winkler 2022-06-14 16:38:50 +02:00
parent db4fec38cd
commit 453cae05ce
Signed by: lukas
GPG key ID: 54DE4D798D244853
4 changed files with 79 additions and 45 deletions

1
.gitignore vendored
View file

@ -7,3 +7,4 @@ __pycache__
*.txt
*.hdf5
mass_function.py
*.pickle

View file

@ -1,4 +1,6 @@
import pickle
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
from typing import List
@ -9,25 +11,27 @@ from matplotlib.colors import LogNorm
from matplotlib.figure import Figure
from cic import cic_from_radius
from cumulative_mass_profiles import cumulative_mass_profile
from paths import auriga_dir
from halo_mass_profile import halo_mass_profile
from paths import auriga_dir, richings_dir
from readfiles import read_file, read_halo_file
from utils import read_swift_config
# softening_length = 0.026041666666666668
class Mode(Enum):
richings = 1
auriga6 = 2
mode = Mode.richings
def dir_name_to_parameter(dir_name: str):
return map(int, dir_name.lstrip("auriga6_halo").split("_"))
return map(int, dir_name.lstrip("auriga6_halo").lstrip("richings21_").split("_"))
def levelmax_to_softening_length(levelmax: int) -> float:
# TODO: replace with real calculation
if levelmax == 9:
return 0.00651041667
if levelmax == 10:
return 0.00325520833
raise ValueError(f"unknown levelmax {levelmax}")
box_size = 100
return box_size / 30 / 2 ** levelmax
fig1: Figure = plt.figure(figsize=(9, 6))
@ -40,6 +44,10 @@ for ax in [ax1, ax2]:
ax1.set_ylabel(r'M [$10^{10} \mathrm{M}_\odot$]')
ax2.set_ylabel("density [$\\frac{10^{10} \\mathrm{M}_\\odot}{Mpc^3}$]")
part_numbers = []
reference_file = Path("auriga_reference.pickle")
@dataclass
class Result:
@ -50,7 +58,8 @@ class Result:
images = []
vmin = np.Inf
vmax = -np.Inf
dirs = [d for d in auriga_dir.glob("*") if d.is_dir() and "bak" not in d.name]
root_dir = auriga_dir if mode == Mode.auriga6 else richings_dir
dirs = [d for d in root_dir.glob("*") if d.is_dir() and "bak" not in d.name]
for i, dir in enumerate(sorted(dirs)):
is_by_adrian = "arj" in dir.name
print(dir.name)
@ -58,7 +67,7 @@ for i, dir in enumerate(sorted(dirs)):
if not is_by_adrian:
levelmin, levelmin_TF, levelmax = dir_name_to_parameter(dir.name)
print(levelmin, levelmin_TF, levelmax)
# if levelmin_TF != 8:
# if levelmax != 12:
# continue
Xc_adrian = 56.50153741810241
Yc_adrian = 49.40761085700951
@ -68,6 +77,8 @@ for i, dir in enumerate(sorted(dirs)):
Zc = 51.68749302578122
input_file = dir / "output_0007.hdf5"
if mode == Mode.richings:
input_file = dir / "output_0004.hdf5"
if is_by_adrian:
input_file = dir / "output_0000.hdf5"
softening_length = None
@ -75,8 +86,10 @@ for i, dir in enumerate(sorted(dirs)):
swift_conf = read_swift_config(dir)
softening_length = swift_conf["Gravity"]["comoving_DM_softening"]
assert softening_length == swift_conf["Gravity"]["max_physical_DM_softening"]
print(levelmax_to_softening_length(levelmax))
assert softening_length == levelmax_to_softening_length(levelmax)
ideal_softening_length = levelmax_to_softening_length(levelmax)
# if not np.isclose(softening_length, levelmax_to_softening_length(levelmax)):
# raise ValueError(f"softening length for levelmax {levelmax} should be {ideal_softening_length} "
# f"but is {softening_length}")
print(input_file)
df, particles_meta = read_file(input_file)
df_halos = read_halo_file(input_file.with_name("fof_" + input_file.name))
@ -91,14 +104,34 @@ for i, dir in enumerate(sorted(dirs)):
halo_id += 1
halo = df_halos.loc[halo_id]
part_numbers.append(len(df) * particles_meta.particle_mass)
# halo = halos.loc[1]
log_radial_bins, bin_masses, bin_densities, group_radius = cumulative_mass_profile(
df, halo, particles_meta, plot=False
log_radial_bins, bin_masses, bin_densities, center = halo_mass_profile(
df, halo, particles_meta, plot=False, num_bins=100,
vmin=0.002, vmax=6.5
)
if is_by_adrian:
with reference_file.open("wb") as f:
pickle.dump([log_radial_bins, bin_masses, bin_densities], f)
ax1.loglog(log_radial_bins[:-1], bin_masses, label=str(dir.name), c=f"C{i}")
ax2.loglog(log_radial_bins[:-1], bin_densities, label=str(dir.name), c=f"C{i}")
if reference_file.exists() and not is_by_adrian and mode == Mode.auriga6:
with reference_file.open("rb") as f:
data: List[np.ndarray] = pickle.load(f)
ref_log_radial_bins, ref_bin_masses, ref_bin_densities = data
mass_deviation: np.ndarray = np.abs(bin_masses - ref_bin_masses)
density_deviation: np.ndarray = np.abs(bin_densities - ref_bin_densities)
ax1.loglog(log_radial_bins[:-1], mass_deviation, c=f"C{i}",
linestyle="dotted")
ax2.loglog(log_radial_bins[:-1], density_deviation, c=f"C{i}",
linestyle="dotted")
accuracy = mass_deviation / ref_bin_masses
print(accuracy)
print("mean accuracy", accuracy.mean())
if softening_length:
for ax in [ax1, ax2]:
ax.axvline(4 * softening_length, color=f"C{i}", linestyle="dotted")
@ -107,17 +140,17 @@ for i, dir in enumerate(sorted(dirs)):
print()
print(Yc - Yc_adrian)
# shift: (-6, 0, -12)
if not is_by_adrian:
xshift = Xc - Xc_adrian
yshift = Yc - Yc_adrian
zshift = Zc - Zc_adrian
print("shift", xshift, yshift, zshift)
# if not is_by_adrian:
# xshift = Xc - Xc_adrian
# yshift = Yc - Yc_adrian
# zshift = Zc - Zc_adrian
# print("shift", xshift, yshift, zshift)
X -= 1.9312
Y -= 1.7375
Z -= 1.8978
X -= center[0]
Y -= center[1]
Z -= center[2]
rho, extent = cic_from_radius(X, Z, 500, Xc_adrian, Yc_adrian, 5, periodic=False)
rho, extent = cic_from_radius(X, Z, 500, 0, 0, 5, periodic=False)
vmin = min(vmin, rho.min())
vmax = max(vmax, rho.max())
@ -134,8 +167,10 @@ for i, dir in enumerate(sorted(dirs)):
ax1.legend()
ax2.legend()
fig3: Figure = plt.figure(figsize=(9, 6))
axes: List[Axes] = fig3.subplots(2, 3, sharex=True, sharey=True).flatten()
# fig3: Figure = plt.figure(figsize=(9, 9))
# axes: List[Axes] = fig3.subplots(3, 3, sharex=True, sharey=True).flatten()
fig3: Figure = plt.figure(figsize=(6, 3))
axes: List[Axes] = fig3.subplots(1, 2, sharex=True, sharey=True).flatten()
for result, ax in zip(images, axes):
data = 1.1 + result.rho
@ -155,3 +190,4 @@ fig2.savefig(Path(f"~/tmp/auriga2_{8}.pdf").expanduser())
fig3.savefig(Path("~/tmp/auriga3.pdf").expanduser())
plt.show()
print(part_numbers)

View file

@ -1,28 +1,29 @@
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from utils import print_progress
def find_center(df: pd.DataFrame, center: np.ndarray, initial_radius=1):
# plt.figure()
all_particles = df[["X", "Y", "Z"]].to_numpy()
radius = initial_radius
center_history = []
i = 0
while True:
center_history.append(center)
distances = np.linalg.norm(all_particles - center, axis=1)
in_radius_particles = all_particles[distances < radius]
num_particles = in_radius_particles.shape[0]
print("num_particles", num_particles)
print_progress(i, "?", f"n={num_particles}, r={radius}, c={center}")
if num_particles < 10:
break
center_of_mass = in_radius_particles.mean(axis=0)
new_center = (center_of_mass + center) / 2
print("new center", new_center)
shift = np.linalg.norm(center - new_center)
radius = max(2 * shift, radius * 0.9)
print("radius", radius)
center = new_center
i += 1
center_history = np.array(center_history)
# print(center_history)
# plt.scatter(center_history[::, 0], center_history[::, 1], c=range(len(center_history[::, 1])))

View file

@ -12,22 +12,18 @@ from readfiles import ParticlesMeta, read_file, read_halo_file
def V(r):
return 4 * np.pi * r ** 3 / 3
return 4 / 3 * np.pi * r ** 3
def cumulative_mass_profile(particles: pd.DataFrame, halo: pd.Series,
particles_meta: ParticlesMeta, plot=False, num_bins=30):
print(type(particles))
def halo_mass_profile(particles: pd.DataFrame, halo: pd.Series,
particles_meta: ParticlesMeta, vmin: float, vmax: float, plot=False, num_bins=30):
center = np.array([halo.X, halo.Y, halo.Z])
center = find_center(particles, center)
positions = particles[["X", "Y", "Z"]].to_numpy()
print(positions)
print(positions.shape)
distances = np.linalg.norm(positions - center, axis=1)
group_radius = distances.max()
# normalized_distances = distances / group_radius
log_radial_bins = np.geomspace(0.01, 2, num_bins)
log_radial_bins = np.geomspace(vmin, vmax, num_bins)
bin_masses = []
bin_densities = []
@ -37,13 +33,13 @@ def cumulative_mass_profile(particles: pd.DataFrame, halo: pd.Series,
in_bin = np.where((bin_start < distances) & (distances < bin_end))[0]
count = in_bin.shape[0]
mass = count * particles_meta.particle_mass
volume = V(bin_end * group_radius) - V(bin_start * group_radius)
volume = V(bin_end) - V(bin_start)
bin_masses.append(mass)
density = mass / volume
bin_densities.append(density)
print(bin_masses)
print(bin_densities)
bin_masses = np.array(bin_masses)
bin_densities = np.array(bin_densities)
bin_masses = np.cumsum(bin_masses)
if plot:
@ -54,13 +50,13 @@ def cumulative_mass_profile(particles: pd.DataFrame, halo: pd.Series,
ax.loglog(log_radial_bins[:-1], bin_masses, label="counts")
ax2.loglog(log_radial_bins[:-1], bin_densities, label="densities", c="C1")
ax.set_xlabel(r'R / R$_\mathrm{group}$')
# ax.set_xlabel(r'R / R$_\mathrm{group}$')
ax.set_ylabel(r'M [$10^{10} \mathrm{M}_\odot$]')
ax2.set_ylabel("density [$\\frac{10^{10} \\mathrm{M}_\\odot}{Mpc^3}$]")
plt.legend()
plt.show()
return log_radial_bins, bin_masses, bin_densities, group_radius
return log_radial_bins, bin_masses, bin_densities, center
if __name__ == '__main__':
@ -78,4 +74,4 @@ if __name__ == '__main__':
halo = df_halos.loc[halo_id]
cumulative_mass_profile(particles_in_halo, halo, particles_meta, plot=True)
halo_mass_profile(particles_in_halo, halo, particles_meta, plot=True)