1
0
Fork 0
This repository has been archived on 2024-06-28. You can view files and clone it, but cannot push or open issues or pull requests.
collision-analysis-and-inte.../simulation.py
2021-10-12 15:45:43 +02:00

244 lines
9.6 KiB
Python

import json
from pathlib import Path
from typing import Optional
import yaml
class Simulation:
def __init__(self):
self.runid = None # type:int
self.vcode = None
self.alphacode = None
self.mcode = None
self.gammacode = None
self.wtcode = None
self.wpcode = None
self.type = None # simulation set
self.v = None # v/v_esc
self.alpha = None # impact angle
self.total_mass = None # m
self.projectile_mass = None # mp
self.target_mass = None # mt
self.projectile_water_fraction = None # wp
self.projectile_core_fraction = None
self.target_water_fraction = None # wt
self.target_core_fraction = None
self.largest_aggregate_mass = None # mS1
self.largest_aggregate_water_fraction = None # wmfS1
self.largest_aggregate_core_fraction = None
self.second_largest_aggregate_mass = None # mS2
self.second_largest_aggregate_water_fraction = None # wmfS2
self.second_largest_aggregate_core_fraction = None
self.rel_velocity = None # vrel
self.rel_velocity_per_esc_velocity = None # vrel_over_vesc
self.desired_N = None
self.actual_N = None
self.relaxation_time = None
self.miluphcuda_time = None
self.setup_time = None
@classmethod
def from_dict(cls, data: dict):
sim = cls()
for key in data:
setattr(sim, key, data[key])
return sim
@property
def gamma(self) -> float:
return self.projectile_mass / self.target_mass
@property
def relative_projectile_mass(self) -> float:
return self.projectile_mass / self.total_mass
@property
def relative_target_mass(self) -> float:
return self.target_mass / self.total_mass
@property
def largest_aggregate_relative_mass(self) -> float:
"""
p['mS1_over_mt'] = p['mS1'] / p['mt']
"""
return self.largest_aggregate_mass / self.target_mass
@property
def largest_aggregate_mantle_fraction(self) -> float:
return 1 - self.largest_aggregate_core_fraction - self.largest_aggregate_water_fraction
@property
def second_largest_aggregate_relative_mass(self) -> float:
"""
p['mS2_over_mp'] = p['mS2'] / p['mp']
"""
return self.second_largest_aggregate_mass / self.projectile_mass
@property
def second_largest_aggregate_mantle_fraction(self) -> float:
return 1 - self.second_largest_aggregate_core_fraction - self.second_largest_aggregate_water_fraction
@property
def projectile_mantle_fraction(self):
return 1 - self.projectile_water_fraction - self.projectile_core_fraction
@property
def target_mantle_fraction(self):
return 1 - self.target_water_fraction - self.target_core_fraction
@property
def initial_water_mass(self) -> float:
return self.projectile_mass * self.projectile_water_fraction + self.target_mass * self.target_water_fraction
@property
def initial_core_mass(self) -> float:
return self.projectile_mass * self.projectile_core_fraction + self.target_mass * self.target_core_fraction
@property
def initial_mantle_mass(self) -> float:
return self.projectile_mass * self.projectile_mantle_fraction + self.target_mass * self.target_mantle_fraction
@property
def water_retention_both(self) -> float:
"""
p['wretentionB'] = (p['mS1'] * p['wmfS1'] + p['mS2'] * p['wmfS2']) / (p['mp'] * p['wp'] + p['mt'] * p['wt'])
"""
return (
self.largest_aggregate_mass * self.largest_aggregate_water_fraction
+ self.second_largest_aggregate_mass * self.second_largest_aggregate_water_fraction
) / self.initial_water_mass
@property
def core_retention_both(self) -> float:
return (
self.largest_aggregate_mass * self.largest_aggregate_core_fraction
+ self.second_largest_aggregate_mass * self.largest_aggregate_core_fraction
) / self.initial_core_mass
@property
def mantle_retention_both(self) -> float:
return (
self.largest_aggregate_mass * self.largest_aggregate_mantle_fraction
+ self.second_largest_aggregate_mass * self.largest_aggregate_mantle_fraction
) / self.initial_mantle_mass
@property
def water_retention_main(self) -> float:
"""
p['wretention1'] = p['mS1'] * p['wmfS1'] / (p['mp'] * p['wp'] + p['mt'] * p['wt'])
"""
return self.largest_aggregate_mass * self.largest_aggregate_water_fraction / self.initial_water_mass
@property
def output_mass_fraction(self) -> Optional[float]:
if not self.largest_aggregate_mass:
return 0 # FIXME
massive_size_relation=self.largest_aggregate_mass/self.target_mass
less_massive_size_relation=self.second_largest_aggregate_mass/self.projectile_mass
print("mr",massive_size_relation, less_massive_size_relation)
return less_massive_size_relation / massive_size_relation
@property
def original_simulation(self) -> bool:
return self.type == "original"
@property
def testcase(self) -> bool:
return self.type == "cloud" and 529 <= self.runid <= 631
@property
def simulation_key(self):
return "id{:04d}_v{:.1f}_a{:.0f}_m{:.0f}_g{:.1f}_wt{:.1f}_wp{:.1f}".format(
self.runid, self.vcode, self.alphacode, self.mcode, self.gammacode, self.wtcode, self.wpcode
)
def __repr__(self):
return f"<Simulation '{vars(self)}'>"
def load_params_from_dirname(self, dirname: str) -> None:
params = dirname.split("_")
self.runid = int(params[0][2:])
self.vcode = float(params[1][1:])
self.alphacode = float(params[2][1:])
self.mcode = float(params[3][1:])
self.gammacode = float(params[4][1:])
self.wtcode = float(params[5][2:])
self.wpcode = float(params[6][2:])
assert dirname == self.simulation_key
def load_params_from_json(self, paramfile: str) -> None:
with open(paramfile) as f:
data = json.load(f)
self.runid = int(data["run_id"])
self.vcode = data["v_code"]
self.alphacode = data["alpha_code"]
self.mcode = data["m_code"]
self.gammacode = data["gamma_code"]
self.wtcode = data["wt_code"]
self.wpcode = data["wp_code"]
def load_params_from_setup_txt(self, file: Path) -> None:
with file.open() as f:
data = yaml.safe_load(f)
# self.runid=data["ID"]
# self.vcode=data["vel_vesc_touching_ball"]
# self.alphacode=data["impact_angle_touching_ball"]
# self.mcode=data["M_tot"]
# self.gammacode=data["gamma"]
# TODO: maybe more needed?
def load_params_from_spheres_ini_log(self, filename: Path) -> None:
with filename.open() as f:
lines = [line.rstrip("\n") for line in f]
for i in range(len(lines)):
line = lines[i]
if "Geometry:" in line:
self.v = float(lines[i + 2].split(" = ")[-1])
print(lines[i + 3])
# self.alpha = float(lines[i + 3].split(" = ")[-1][:-1]) #for old format
self.alpha = float(lines[i + 3].split(" = ")[-1].split(" ")[0])
if "Masses:" in line:
self.total_mass = float(lines[i + 2].split()[3])
self.projectile_mass = float(lines[i + 4].split()[3])
self.target_mass = float(lines[i + 6].split()[3])
if "Mantle/shell mass fractions:" in line:
self.projectile_water_fraction = float(lines[i + 1].split()[7])
self.target_water_fraction = float(lines[i + 3].split()[7])
if "Particle numbers" in line:
self.desired_N = int(lines[i + 1].split()[4])
self.actual_N = int(lines[i + 1].split()[-1])
def load_params_from_aggregates_txt(self, filename: Path) -> None:
with filename.open() as f:
lines = [line.rstrip("\n") for line in f]
for i in range(len(lines)):
line = lines[i]
if "# largest aggregate" in line:
cols = lines[i + 2].split()
self.largest_aggregate_mass = float(cols[0])
self.largest_aggregate_core_fraction = float(cols[1])
self.largest_aggregate_water_fraction = 1 - float(cols[2]) - self.largest_aggregate_core_fraction
if "# 2nd-largest aggregate:" in line:
cols = lines[i + 2].split()
self.second_largest_aggregate_mass = float(cols[0])
self.second_largest_aggregate_core_fraction = float(cols[1])
self.second_largest_aggregate_water_fraction = 1 - float(
cols[2]) - self.second_largest_aggregate_core_fraction
if "# distance" in line: # TODO: not sure if correct anymore
self.distance = float(lines[i + 1].split()[0])
self.rel_velocity = float(lines[i + 1].split()[1])
self.rel_velocity_per_esc_velocity = float(lines[i + 1].split()[2])
def load_params_from_pythontiming_json(self, filename: str) -> None:
with open(filename) as f:
data = json.load(f)
self.miluphcuda_time = data["miluphcuda"]
self.relaxation_time = data["relaxation"]
self.setup_time = data["setup"]
def assert_all_loaded(self) -> None:
for key, value in self.__dict__.items():
print(key, value)
assert value is not None