1
0
Fork 0
This repository has been archived on 2024-06-28. You can view files and clone it, but cannot push or open issues or pull requests.
collision-analysis-and-inte.../cli.py
2021-10-12 15:45:43 +02:00

103 lines
3.2 KiB
Python

import sys
from math import pi, sqrt
from scipy.constants import G, astronomical_unit
from CustomScaler import CustomScaler
from interpolators.rbf import RbfInterpolator
from simulation_list import SimulationList
def clamp(n, smallest, largest):
assert smallest < largest
return max(smallest, min(n, largest))
if len(sys.argv) < 2:
print("specify filename")
exit(1)
if sys.argv[1] == "-h":
print("alpha\t\t\tthe impact angle \t[degrees]")
print("velocity\t\tthe impact velocity \t[AU/58d]")
print("projectile-mass\t\tmass of the projectile \t[M_⊙]")
print("target-mass\t\tmass of the projectile \t[M_⊙]")
exit()
with open(sys.argv[1]) as f:
entries = f.readline().split()
if len(entries) != 4:
print("file must contain 4 parameters")
argalpha, argvelocity, argmp, argmt = map(float, entries)
solar_mass = 1.98847542e+30 # kg
ice_density = 0.917 / 1000 * 100 ** 3 # kg/m^3
basalt_density = 2.7 / 1000 * 100 ** 3 # kg/m^3
water_fraction = 0.15
alpha = argalpha
target_water_fraction = water_fraction
projectile_water_fraction = water_fraction
projectile_mass_sm = argmp
target_mass_sm = argmt
projectile_mass = projectile_mass_sm * solar_mass
target_mass = target_mass_sm * solar_mass
def core_radius(total_mass, water_fraction, density):
core_mass = total_mass * (1 - water_fraction)
return (core_mass / density * 3 / 4 / pi) ** (1 / 3)
def total_radius(total_mass, water_fraction, density, inner_radius):
mantle_mass = total_mass * water_fraction
return (mantle_mass / density * 3 / 4 / pi + inner_radius ** 3) ** (1 / 3)
target_core_radius = core_radius(target_mass, target_water_fraction, basalt_density)
target_radius = total_radius(target_mass, target_water_fraction, ice_density, target_core_radius)
projectile_core_radius = core_radius(projectile_mass, projectile_water_fraction, basalt_density)
projectile_radius = total_radius(projectile_mass, projectile_water_fraction, ice_density, projectile_core_radius)
escape_velocity = sqrt(2 * G * (target_mass + projectile_mass) / (target_radius + projectile_radius))
velocity_original = argvelocity
const = 365.256 / (2 * pi) # ~58.13
velocity_si = velocity_original * astronomical_unit / const / (60 * 60 * 24)
velocity = velocity_si / escape_velocity
gamma = projectile_mass_sm / target_mass_sm
if alpha > 90:
alpha = 180 - alpha
if gamma > 1:
gamma = 1 / gamma
alpha = clamp(alpha, 0, 60)
velocity = clamp(velocity, 1, 5)
m_ceres = 9.393e+20
m_earth = 5.9722e+24
projectile_mass = clamp(projectile_mass, 2 * m_ceres, 2 * m_earth)
gamma = clamp(gamma, 1 / 10, 1)
simulations = SimulationList.jsonlines_load()
scaler = CustomScaler()
scaler.fit(simulations.X)
scaled_data = scaler.transform_data(simulations.X)
water_interpolator = RbfInterpolator(scaled_data, simulations.Y_water)
mass_interpolator = RbfInterpolator(scaled_data, simulations.Y_mantle)
testinput = [32, 1, 7.6e22, 0.16, 0.15, 0.15]
scaled_input = list(scaler.transform_parameters(testinput))
water_retention = water_interpolator.interpolate(*scaled_input)
mass_retention = mass_interpolator.interpolate(*scaled_input)
water_retention = clamp(water_retention, 0, 1)
mass_retention = clamp(mass_retention, 0, 1)
print(water_retention)
print(mass_retention)