import json from statistics import mean import numpy as np from keras.engine.saving import load_model from CustomScaler import CustomScaler from config import water_fraction from interpolators.griddata import GriddataInterpolator from interpolators.rbf import RbfInterpolator from simulation import Simulation from simulation_list import SimulationList simulations = SimulationList.jsonlines_load() scaler = CustomScaler() scaler.fit(simulations.X) model = load_model("model.hd5" if water_fraction else "model_mass.hd5") def squared_error(inter: float, correct: float) -> float: return (inter - correct) ** 2 def absolute_error(inter: float, correct: float) -> float: return abs(inter - correct) def neural_network_test(scaled_input) -> float: nn_input = np.asarray([scaled_input]) testoutput = model.predict(nn_input)[0][0] return testoutput def rbf_test(scaled_parameters) -> float: scaled_data = scaler.transform_data(simulations.X) interpolator = RbfInterpolator(scaled_data, simulations.Y) result = interpolator.interpolate(*scaled_parameters) return result def grid_test(scaled_parameters) -> float: scaled_data = scaler.transform_data(simulations.X) interpolator = GriddataInterpolator(scaled_data, simulations.Y) result = interpolator.interpolate(*scaled_parameters) return float(result) nn_squared_errors = [] nn_errors = [] rbf_squared_errors = [] rbf_errors = [] grid_squared_errors = [] grid_errors = [] cachefile="grid-testing-cache.json" if water_fraction else "grid-testing-cache-mass.json" try: with open(cachefile) as f: raw_data = json.load(f) grid_testing_cache = {int(key): value for key, value in raw_data.items()} except FileNotFoundError: grid_testing_cache = {} sim: Simulation a = 0 for sim in simulations.simlist: if not sim.testcase: continue a += 1 testinput = [sim.alpha, sim.v, sim.projectile_mass, sim.gamma, sim.target_water_fraction, sim.projectile_water_fraction] scaled_input = list(scaler.transform_parameters(testinput)) nn_output = neural_network_test(scaled_input) nn_squared_errors.append(squared_error(nn_output, sim.water_retention_both)) nn_errors.append(absolute_error(nn_output, sim.water_retention_both)) rbf_output = rbf_test(scaled_input) rbf_squared_errors.append(squared_error(rbf_output, sim.water_retention_both)) rbf_errors.append(absolute_error(rbf_output, sim.water_retention_both)) if sim.runid in grid_testing_cache: grid_output = grid_testing_cache[sim.runid] else: grid_output = grid_test(scaled_input) if np.isnan(grid_output): grid_output = False grid_testing_cache[sim.runid] = grid_output with open(cachefile, "w") as f: json.dump(grid_testing_cache, f) if grid_output: grid_squared_errors.append(squared_error(grid_output, sim.water_retention_both)) grid_errors.append(absolute_error(grid_output, sim.water_retention_both)) print(nn_output, rbf_output, grid_output, sim.water_retention_both) print(a) print() # print(nn_squared_errors) print(mean(nn_squared_errors)) print(mean(nn_errors)) print() # print(rbf_squared_errors) print(mean(rbf_squared_errors)) print(mean(rbf_errors)) print() # print(grid_squared_errors) print(mean(grid_squared_errors)) print(mean(grid_errors))