1
0
Fork 0

working Scaling

This commit is contained in:
Lukas Winkler 2019-05-02 14:12:06 +02:00
parent ba3e6d1e52
commit f32fe95d55
Signed by: lukas
GPG key ID: 54DE4D798D244853
3 changed files with 48 additions and 11 deletions

31
CustomScaler.py Normal file
View file

@ -0,0 +1,31 @@
from typing import List
import numpy as np
class CustomScaler:
def __init__(self):
self.means = None
self.stds = None
def fit(self, data: np.ndarray) -> None:
self.means = np.mean(data, 0)
self.stds = np.std(data, 0)
print(self.means)
print(self.stds)
def _check_fitted(self):
if (self.means is None) or (self.stds is None):
raise Exception("you need to first fit data")
def transform_data(self, data: np.ndarray) -> np.ndarray:
self._check_fitted()
return (data - self.means) / self.stds
# return data
def transform_parameters(self, parameters: List) -> List:
self._check_fitted()
if len(parameters) != len(self.means):
raise ValueError("incorrect number of parameters")
for index, parameter in enumerate(parameters):
yield (parameter - self.means[index]) / self.stds[index]

View file

@ -1,12 +1,12 @@
from numpy import ndarray
from numpy import ndarray, save
from scipy.interpolate import griddata
from interpolators.base import BaseInterpolator
class GriddataInterpolator(BaseInterpolator):
def __init__(self,*args,**kwargs):
super().__init__(*args,**kwargs)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def interpolate(self, alpha, v, mcode, gamma, wt, wp) -> ndarray:
return griddata(self.points, self.values, (alpha, v, mcode, gamma, wt, wp), method="linear")

View file

@ -1,27 +1,33 @@
import numpy as np
from matplotlib import pyplot as plt
from CustomScaler import CustomScaler
from interpolators.griddata import GriddataInterpolator
from interpolators.rbf import RbfInterpolator
from simulation_list import SimulationList
mcode, gamma, wt, wp = [22.0, 1, 10.0, 10.0]
mcode, gamma, wt, wp = [10**21, 1, 10.0, 10.0]
simlist = SimulationList.jsonlines_load()
simulations = simlist.simlist
data = np.array([[s.alphacode, s.vcode, s.mcode, s.gammacode, s.wtcode, s.wpcode] for s in simulations])
data = np.array([[s.alphacode, s.vcode, 10**s.mcode, s.gammacode, s.wtcode, s.wpcode] for s in simulations])
scaler = CustomScaler()
scaler.fit(data)
scaled_data = scaler.transform_data(data)
values = np.array([s.water_retention_both for s in simulations])
alpharange = np.linspace(-0.5, 60.5, 100)
vrange = np.linspace(0.5, 5.5, 100)
grid_alpha, grid_v = np.meshgrid(alpharange, vrange)
interpolator = RbfInterpolator(data, values)
interpolator = GriddataInterpolator(scaled_data, values)
# print(grid_alpha)
grid_result = interpolator.interpolate(grid_alpha, grid_v, mcode, gamma, wt, wp)
print(grid_result[0][30])
# print(grid_result.shape)
# exit()
parameters = [grid_alpha, grid_v, mcode, gamma, wt, wp]
scaled_parameters = list(scaler.transform_parameters(parameters))
grid_result = interpolator.interpolate(*scaled_parameters)
print(grid_alpha.shape)
print(grid_result.shape)
plt.title("m={:3.0f}, gamma={:3.1f}, wt={:2.0f}, wp={:2.0f}\n".format(mcode, gamma, wt, wp))