From b6b55519fcbf975d576e87d7c9647fcabdd5069a Mon Sep 17 00:00:00 2001 From: Lukas Winkler Date: Mon, 29 Mar 2021 15:02:46 +0200 Subject: [PATCH] add pytorch model --- CustomScaler.py | 6 +- network.py | 19 ++++ neural_network.py | 240 +++++++++++++++++++++++++++++----------------- simulation.py | 8 +- sliders_nn.py | 85 ++++++++-------- 5 files changed, 227 insertions(+), 131 deletions(-) create mode 100644 network.py diff --git a/CustomScaler.py b/CustomScaler.py index 712fa40..d519bbf 100644 --- a/CustomScaler.py +++ b/CustomScaler.py @@ -1,4 +1,4 @@ -from typing import List, Iterator +from typing import List, Iterator, Optional import numpy as np @@ -10,8 +10,8 @@ class CustomScaler: """ def __init__(self): - self.means = None - self.stds = None + self.means: Optional[np.ndarray] = None + self.stds: Optional[np.ndarray] = None def fit(self, data: np.ndarray) -> None: self.means = np.mean(data, 0) diff --git a/network.py b/network.py new file mode 100644 index 0000000..529ae02 --- /dev/null +++ b/network.py @@ -0,0 +1,19 @@ +from torch import nn + + +class Network(nn.Module): + def __init__(self): + super().__init__() + self.hidden = nn.Linear(6, 50) + self.output = nn.Linear(50, 4) + + self.sigmoid = nn.Sigmoid() + self.relu = nn.ReLU() + + def forward(self, x): + x = self.hidden(x) + x = self.relu(x) + x = self.output(x) + x = self.sigmoid(x) + + return x diff --git a/neural_network.py b/neural_network.py index 96725f8..d96b4e8 100644 --- a/neural_network.py +++ b/neural_network.py @@ -1,101 +1,167 @@ -import os +import json import random +from pathlib import Path -import keras import numpy as np -from keras import Sequential -from keras.engine.saving import load_model -from keras.layers import Dense -from keras.utils import plot_model +import torch from matplotlib import pyplot as plt +from matplotlib.axes import Axes +from matplotlib.figure import Figure +from matplotlib.lines import Line2D +from torch import nn, optim, from_numpy, Tensor +from torch.utils.data import DataLoader, TensorDataset from CustomScaler import CustomScaler -from config import water_fraction +from network import Network from simulation_list import SimulationList -simulations = SimulationList.jsonlines_load() -train_data = set([s for s in simulations.simlist]) -new_data = [s for s in simulations.simlist if s.type != "original"] -random.seed(1) -test_data = set(random.sample(new_data, int(len(new_data) * 0.2))) -train_data -= test_data -print(len(train_data), len(test_data)) -X = np.array( - [[s.alpha, s.v, s.projectile_mass, s.gamma, s.target_water_fraction, s.projectile_water_fraction] for s in - train_data]) -scaler = CustomScaler() -scaler.fit(X) -x = scaler.transform_data(X) -print(x.shape) -if water_fraction: - Y = np.array([s.water_retention_both for s in train_data]) -else: - Y = np.array([s.mass_retention_both for s in train_data]) -print(Y.shape) -X_test = np.array( - [[s.alpha, s.v, s.projectile_mass, s.gamma, s.target_water_fraction, s.projectile_water_fraction] for s in - test_data]) -Y_test = np.array([s.mass_retention_both for s in test_data]) -x_test = scaler.transform_data(X_test) -# print(X_test) -# print(X[0]) -# exit() -random.seed() -tbCallBack = keras.callbacks.TensorBoard(log_dir='./logs/{}'.format(random.randint(0, 100)), histogram_freq=1, - batch_size=32, write_graph=True, - write_grads=True, write_images=True, embeddings_freq=0, - embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None, - update_freq='epoch') -modelname = "model.hd5" if water_fraction else "model_mass.hd5" +def train(): + filename = "rsmc_dataset" -if os.path.exists(modelname): - model = load_model(modelname) -else: - model = Sequential() - model.add(Dense(6, input_dim=6, activation='relu')) - model.add(Dense(4, kernel_initializer='normal', activation='relu')) - model.add(Dense(3, kernel_initializer='normal', activation='relu')) - model.add(Dense(1, kernel_initializer='normal', activation="sigmoid")) - model.compile(loss='mean_squared_error', optimizer='adam') + simulations = SimulationList.jsonlines_load(Path(f"{filename}.jsonl")) - model.summary() - plot_model(model, "model.png", show_shapes=True, show_layer_names=True) - model.fit(x, Y, epochs=200, callbacks=[tbCallBack], validation_data=(x_test, Y_test)) - loss = model.evaluate(x_test, Y_test) - print(loss) - if loss > 0.04: - # exit() - ... - # print("-------------------------------------") - # exit() - model.save(modelname) + # random.seed(1) + test_data = random.sample(simulations.simlist, int(len(simulations.simlist) * 0.2)) + test_set = set(test_data) # use a set for faster *in* computation + train_data = [s for s in simulations.simlist if s not in test_set] + print(len(train_data), len(test_data)) -xrange = np.linspace(-0.5, 60.5, 300) -yrange = np.linspace(0.5, 5.5, 300) -xgrid, ygrid = np.meshgrid(xrange, yrange) -mcode = 1e24 -wpcode = 15 / 100 -wtcode = 15 / 100 -gammacode = 0.6 -testinput = np.array([[np.nan, np.nan, mcode, gammacode, wtcode, wpcode]] * 300 * 300) -testinput[::, 0] = xgrid.flatten() -testinput[::, 1] = ygrid.flatten() -testinput = scaler.transform_data(testinput) + X = np.array( + [[s.alpha, s.v, s.projectile_mass, s.gamma, s.target_water_fraction, s.projectile_water_fraction] for s in + train_data]) + scaler = CustomScaler() + scaler.fit(X) + x = scaler.transform_data(X) + print(x.shape) + Y = np.array([[ + s.water_retention_both, s.mantle_retention_both, s.core_retention_both, + s.output_mass_fraction + ] for s in train_data]) -print(testinput) -print(testinput.shape) -testoutput = model.predict(testinput) -outgrid = np.reshape(testoutput, (300, 300)) -print("minmax") -print(np.nanmin(outgrid), np.nanmax(outgrid)) -cmap = "Blues" if water_fraction else "Oranges" -plt.imshow(outgrid, interpolation='none', cmap=cmap, aspect="auto", origin="lower", vmin=0, vmax=1, - extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()]) + X_test = np.array( + [[s.alpha, s.v, s.projectile_mass, s.gamma, s.target_water_fraction, s.projectile_water_fraction] for s in + test_data]) + Y_test = np.array([[ + s.water_retention_both, s.mantle_retention_both, s.core_retention_both, + s.output_mass_fraction + ] for s in test_data]) + x_test = scaler.transform_data(X_test) + random.seed() -plt.colorbar().set_label("water retention fraction" if water_fraction else "core mass retention fraction") -plt.xlabel("impact angle $\\alpha$ [$^{\circ}$]") -plt.ylabel("velocity $v$ [$v_{esc}$]") -plt.tight_layout() -plt.savefig("../arbeit/images/plots/nn2.pdf") -plt.show() + dataset = TensorDataset(from_numpy(x).to(torch.float), from_numpy(Y).to(torch.float)) + train_dataset = TensorDataset(from_numpy(x_test).to(torch.float), from_numpy(Y_test).to(torch.float)) + dataloader = DataLoader(dataset, batch_size=64, shuffle=True) + validation_dataloader = DataLoader(train_dataset, batch_size=64, shuffle=False) + + network = Network() + + loss_fn = nn.MSELoss() + + optimizer = optim.Adam(network.parameters()) + + loss_train = [] + loss_vali = [] + + max_epochs = 120 + epochs = 0 + + fig: Figure = plt.figure() + ax: Axes = fig.gca() + x_axis = np.arange(epochs) + loss_plot: Line2D = ax.plot(x_axis, loss_train, label="loss_train")[0] + vali_plot: Line2D = ax.plot(x_axis, loss_vali, label="loss_validation")[0] + ax.legend() + plt.ion() + plt.pause(0.01) + plt.show() + + for e in range(max_epochs): + print(f"Epoch: {e}") + total_loss = 0 + network.train() + for xs, ys in dataloader: + # Training pass + optimizer.zero_grad() + + output = network(xs) + loss = loss_fn(output, ys) + loss.backward() + optimizer.step() + + total_loss += loss.item() + loss_train.append(float(total_loss / len(dataloader))) + print(f"Training loss: {total_loss / len(dataloader)}") + + # validation: + network.eval() + total_loss_val = 0 + for xs, ys in validation_dataloader: + output = network(xs) + total_loss_val += loss_fn(output, ys).item() + loss_vali.append(float(total_loss_val / len(validation_dataloader))) + print(f"Validation loss: {total_loss_val / len(validation_dataloader)}") + epochs += 1 + + x_axis = np.arange(epochs) + loss_plot.set_xdata(x_axis) + vali_plot.set_xdata(x_axis) + loss_plot.set_ydata(loss_train) + vali_plot.set_ydata(loss_vali) + ax.relim() + ax.autoscale_view(True, True, True) + plt.pause(0.01) + # plt.draw() + # if epochs > 6: + # a = np.sum(np.array(loss_vali[-3:])) + # b = np.sum(np.array(loss_vali[-6:-3])) + # if a > b: # overfitting on training data, stop training + # print("early stopping") + # break + plt.ioff() + torch.save(network.state_dict(), "pytorch_model.zip") + with open("pytorch_model.json", "w") as f: + export_dict = {} + value_tensor: Tensor + for key, value_tensor in network.state_dict().items(): + export_dict[key] = value_tensor.detach().tolist() + export_dict["means"] = scaler.means.tolist() + export_dict["stds"] = scaler.stds.tolist() + json.dump(export_dict, f) + + xrange = np.linspace(-0.5, 60.5, 300) + yrange = np.linspace(0.5, 5.5, 300) + xgrid, ygrid = np.meshgrid(xrange, yrange) + mcode = 1e24 + wpcode = 1e-4 + + wtcode = 1e-4 + gammacode = 0.6 + testinput = np.array([[np.nan, np.nan, mcode, gammacode, wtcode, wpcode]] * 300 * 300) + testinput[::, 0] = xgrid.flatten() + testinput[::, 1] = ygrid.flatten() + testinput = scaler.transform_data(testinput) + + print(testinput) + print(testinput.shape) + testoutput: Tensor = network(from_numpy(testinput).to(torch.float)) + data = testoutput.detach().numpy() + outgrid = np.reshape(data[::, 0], (300, 300)) + print("minmax") + print(np.nanmin(outgrid), np.nanmax(outgrid)) + cmap = "Blues" + plt.title( + "m={:3.0e}, gamma={:3.1f}, wt={:2.0f}%, wp={:2.0f}%\n".format(mcode, gammacode, wtcode * 100, wpcode * 100)) + plt.imshow(outgrid, interpolation='none', cmap=cmap, aspect="auto", origin="lower", vmin=0, vmax=1, + extent=[xgrid.min(), xgrid.max(), ygrid.min(), ygrid.max()]) + + plt.colorbar().set_label("water retention fraction") + plt.xlabel("impact angle $\\alpha$ [$^{\circ}$]") + plt.ylabel("velocity $v$ [$v_{esc}$]") + plt.tight_layout() + # plt.savefig("/home/lukas/tmp/nn.svg", transparent=True) + plt.show() + + +if __name__ == '__main__': + train() diff --git a/simulation.py b/simulation.py index 7f13d72..b993a2d 100644 --- a/simulation.py +++ b/simulation.py @@ -1,4 +1,5 @@ import json +from typing import Optional class Simulation: @@ -76,7 +77,6 @@ class Simulation: def second_largest_aggregate_mantle_fraction(self) -> float: return 1 - self.second_largest_aggregate_core_fraction - self.second_largest_aggregate_water_fraction - @property def projectile_mantle_fraction(self): return 1 - self.projectile_water_fraction - self.projectile_core_fraction @@ -128,6 +128,12 @@ class Simulation: """ return self.largest_aggregate_mass * self.largest_aggregate_water_fraction / self.initial_water_mass + @property + def output_mass_fraction(self) -> Optional[float]: + if not self.largest_aggregate_mass: + return 0 # FIXME + return self.second_largest_aggregate_mass / self.largest_aggregate_mass + @property def original_simulation(self) -> bool: return self.type == "original" diff --git a/sliders_nn.py b/sliders_nn.py index 71c6711..0b05b6a 100644 --- a/sliders_nn.py +++ b/sliders_nn.py @@ -1,79 +1,84 @@ +from pathlib import Path + import matplotlib.pyplot as plt import numpy as np -from keras.engine.saving import load_model +import torch from matplotlib.collections import QuadMesh from matplotlib.widgets import Slider -from sklearn.preprocessing import StandardScaler +from CustomScaler import CustomScaler +from network import Network from simulation_list import SimulationList -simlist = SimulationList.jsonlines_load() +simlist = SimulationList.jsonlines_load(Path("rsmc_dataset.jsonl")) +resolution = 100 -X = simlist.X -scaler = StandardScaler() -scaler.fit(X) +data = simlist.X +scaler = CustomScaler() +scaler.fit(data) fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.35) t = np.arange(0.0, 1.0, 0.001) mcode_default, gamma_default, wt_default, wp_default = [24.0, 1, 15.0, 15.0] -xrange = np.linspace(-0.5, 60.5, 100) -yrange = np.linspace(0.5, 5.5, 100) -xgrid, ygrid = np.meshgrid(xrange, yrange) -mcode = 24. -wpcode = 15 / 100 -wtcode = 15 / 100 -gammacode = 1 +alpharange = np.linspace(-0.5, 60.5, resolution) +vrange = np.linspace(0.5, 5.5, resolution) +grid_alpha, grid_v = np.meshgrid(alpharange, vrange) -testinput = np.array([[np.nan, np.nan, mcode, gammacode, wtcode, wpcode]] * 100 * 100) -testinput[::, 0] = xgrid.flatten() -testinput[::, 1] = ygrid.flatten() -testinput = scaler.transform(testinput) +model = Network() +model.load_state_dict(torch.load("pytorch_model.zip")) -model = load_model("model.hd5") +datagrid = np.zeros_like(grid_alpha) -testoutput = model.predict(testinput) -outgrid = np.reshape(testoutput, (100, 100)) -mesh = plt.pcolormesh(xgrid, ygrid, outgrid, cmap="Blues", vmin=0, vmax=1) # type:QuadMesh +mesh = plt.pcolormesh(grid_alpha, grid_v, datagrid, cmap="Blues", vmin=0, vmax=1, shading="auto") # type:QuadMesh plt.colorbar() axcolor = 'lightgoldenrodyellow' -ax_mcode = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor) -ax_gamma = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor) -ax_wt = plt.axes([0.25, 0.20, 0.65, 0.03], facecolor=axcolor) -ax_wp = plt.axes([0.25, 0.25, 0.65, 0.03], facecolor=axcolor) +ax_mcode = plt.axes([0.25, 0.1, 0.65, 0.03]) +ax_gamma = plt.axes([0.25, 0.15, 0.65, 0.03]) +ax_wt = plt.axes([0.25, 0.20, 0.65, 0.03]) +ax_wp = plt.axes([0.25, 0.25, 0.65, 0.03]) +ax_mode = plt.axes([0.25, 0.05, 0.65, 0.03]) s_mcode = Slider(ax_mcode, 'mcode', 21, 25, valinit=mcode_default) s_gamma = Slider(ax_gamma, 'gamma', 0.1, 1, valinit=gamma_default) -s_wt = Slider(ax_wt, 'wt', 10, 20, valinit=wt_default) -s_wp = Slider(ax_wp, 'wp', 10, 20, valinit=wp_default) +s_wt = Slider(ax_wt, 'wt', 1e-5, 1e-3, valinit=wt_default) +s_wp = Slider(ax_wp, 'wp', 1e-5, 1e-3, valinit=wp_default) +s_mode = Slider(ax_mode, 'shell/mantle/core/mass_fraction', 1, 4, valinit=1, valstep=1) def update(val): - mcode = 10 ** s_mcode.val + mcode = s_mcode.val gamma = s_gamma.val - wt = s_wt.val / 100 - wp = s_wp.val / 100 - testinput = np.array([[np.nan, np.nan, mcode, gamma, wt, wp]] * 100 * 100) - testinput[::, 0] = xgrid.flatten() - testinput[::, 1] = ygrid.flatten() - testinput = scaler.transform(testinput) + wt = s_wt.val + wp = s_wp.val + mode = s_mode.val + testinput = np.array([[np.nan, np.nan, 10 ** mcode, gamma, wt, wp]] * resolution * resolution) + testinput[::, 0] = grid_alpha.flatten() + testinput[::, 1] = grid_v.flatten() + testinput = scaler.transform_data(testinput) - testoutput = model.predict(testinput) - outgrid = np.reshape(testoutput, (100, 100)) - # if not isinstance(datagrid, np.ndarray): - # return False - formatedgrid = outgrid[:-1, :-1] + try: + testoutput: torch.Tensor = model(torch.from_numpy(testinput).to(torch.float)) + data = testoutput.detach().numpy() + print(data.shape) + except TypeError: # can't convert np.ndarray of type numpy.object_. + data = np.zeros((resolution ** 2, 3)) - mesh.set_array(formatedgrid.ravel()) + datagrid = np.reshape(data[::, mode - 1], (resolution, resolution)) + + mesh.set_array(datagrid.ravel()) fig.canvas.draw_idle() +update(None) + s_gamma.on_changed(update) s_mcode.on_changed(update) s_wp.on_changed(update) s_wt.on_changed(update) +s_mode.on_changed(update) plt.show()