1
0
Fork 0

test results on seperate dataset

This commit is contained in:
Lukas Winkler 2019-08-01 13:06:46 +02:00
parent b33121e428
commit 2218060664
Signed by: lukas
GPG key ID: 54DE4D798D244853
4 changed files with 98 additions and 12 deletions

View file

@ -90,7 +90,7 @@ class Simulation:
@property
def testcase(self) -> bool:
return not self.original_simulation and 489 <= self.runid <= 1000 # TODO: replace with real last testcase
return not self.original_simulation and 529 <= self.runid <= 631
@property
def simulation_key(self):

View file

@ -46,10 +46,10 @@ class SimulationList:
def as_matrix(self):
entrylist = []
for sim in self.simlist:
if sim.type == "original":
if not sim.testcase:
entrylist.append(
[sim.mcode, sim.wpcode, sim.wtcode, sim.gammacode, sim.alphacode, sim.vcode,
sim.water_retention_both]
[sim.alpha, sim.v, sim.projectile_mass, sim.gamma, sim.target_water_fraction,
sim.projectile_water_fraction, sim.water_retention_both]
)
return np.asarray(entrylist)

View file

@ -1,8 +0,0 @@
from simulation import Simulation
from simulation_list import SimulationList
simulations = SimulationList.jsonlines_load()
sim: Simulation
for sim in simulations.simlist:
print(sim.simulation_key)

94
testing.py Normal file
View file

@ -0,0 +1,94 @@
from statistics import mean
from keras.engine.saving import load_model
from CustomScaler import CustomScaler
from interpolators.griddata import GriddataInterpolator
from interpolators.rbf import RbfInterpolator
from simulation import Simulation
from simulation_list import SimulationList
import numpy as np
simulations = SimulationList.jsonlines_load()
scaler = CustomScaler()
scaler.fit(simulations.X)
model = load_model("model.hd5")
def squared_error(inter: float, correct: float) -> float:
return (inter - correct) ** 2
def absolute_error(inter: float, correct: float) -> float:
return abs(inter - correct)
def neural_network_test(scaled_input) -> float:
nn_input = np.asarray([scaled_input])
testoutput = model.predict(nn_input)[0][0]
return testoutput
def rbf_test(scaled_parameters) -> float:
scaled_data = scaler.transform_data(simulations.X)
interpolator = RbfInterpolator(scaled_data, simulations.Y)
result = interpolator.interpolate(*scaled_parameters)
return result
def grid_test(scaled_parameters) -> float:
scaled_data = scaler.transform_data(simulations.X)
interpolator = GriddataInterpolator(scaled_data, simulations.Y)
result = interpolator.interpolate(*scaled_parameters)
return result
nn_squared_errors = []
nn_errors = []
rbf_squared_errors = []
rbf_errors = []
grid_squared_errors = []
grid_errors = []
sim: Simulation
a = 0
for sim in simulations.simlist:
if not sim.testcase:
continue
a += 1
continue
testinput = [sim.alpha, sim.v, sim.projectile_mass, sim.gamma,
sim.target_water_fraction, sim.projectile_water_fraction]
scaled_input = list(scaler.transform_parameters(testinput))
nn_output = neural_network_test(scaled_input)
nn_squared_errors.append(squared_error(nn_output, sim.water_retention_both))
nn_errors.append(absolute_error(nn_output, sim.water_retention_both))
rbf_output = rbf_test(scaled_input)
rbf_squared_errors.append(squared_error(rbf_output, sim.water_retention_both))
rbf_errors.append(absolute_error(rbf_output, sim.water_retention_both))
# grid_output = grid_test(scaled_input)
grid_output = 1 # dummy to speed up calculation
grid_squared_errors.append(squared_error(grid_output, sim.water_retention_both))
grid_errors.append(absolute_error(grid_output, sim.water_retention_both))
print(nn_output, rbf_output, grid_output, sim.water_retention_both)
print(a)
print()
# print(nn_squared_errors)
print(mean(nn_squared_errors))
print(mean(nn_errors))
print()
# print(rbf_squared_errors)
print(mean(rbf_squared_errors))
print(mean(rbf_errors))
print()
# print(grid_squared_errors)
print(mean(grid_squared_errors))
print(mean(grid_errors))