1
0
Fork 0
This repository has been archived on 2024-06-28. You can view files and clone it, but cannot push or open issues or pull requests.
collision-analysis-and-inte.../testing.py

110 lines
3.3 KiB
Python
Raw Permalink Normal View History

2019-08-20 12:51:31 +02:00
import json
2019-08-01 13:06:46 +02:00
from statistics import mean
2019-08-20 12:51:31 +02:00
import numpy as np
2019-08-01 13:06:46 +02:00
from keras.engine.saving import load_model
from CustomScaler import CustomScaler
2019-08-21 12:54:27 +02:00
from config import water_fraction
2019-08-01 13:06:46 +02:00
from interpolators.griddata import GriddataInterpolator
from interpolators.rbf import RbfInterpolator
from simulation import Simulation
from simulation_list import SimulationList
simulations = SimulationList.jsonlines_load()
scaler = CustomScaler()
scaler.fit(simulations.X)
2019-08-21 12:54:27 +02:00
model = load_model("model.hd5" if water_fraction else "model_mass.hd5")
2019-08-01 13:06:46 +02:00
def squared_error(inter: float, correct: float) -> float:
return (inter - correct) ** 2
def absolute_error(inter: float, correct: float) -> float:
return abs(inter - correct)
def neural_network_test(scaled_input) -> float:
nn_input = np.asarray([scaled_input])
testoutput = model.predict(nn_input)[0][0]
return testoutput
def rbf_test(scaled_parameters) -> float:
scaled_data = scaler.transform_data(simulations.X)
interpolator = RbfInterpolator(scaled_data, simulations.Y)
result = interpolator.interpolate(*scaled_parameters)
return result
def grid_test(scaled_parameters) -> float:
scaled_data = scaler.transform_data(simulations.X)
interpolator = GriddataInterpolator(scaled_data, simulations.Y)
result = interpolator.interpolate(*scaled_parameters)
2019-08-20 12:51:31 +02:00
return float(result)
2019-08-01 13:06:46 +02:00
nn_squared_errors = []
nn_errors = []
rbf_squared_errors = []
rbf_errors = []
grid_squared_errors = []
grid_errors = []
2019-08-21 12:54:27 +02:00
cachefile="grid-testing-cache.json" if water_fraction else "grid-testing-cache-mass.json"
2019-08-20 12:51:31 +02:00
try:
2019-08-21 12:54:27 +02:00
with open(cachefile) as f:
2019-08-20 12:51:31 +02:00
raw_data = json.load(f)
grid_testing_cache = {int(key): value for key, value in raw_data.items()}
except FileNotFoundError:
grid_testing_cache = {}
2019-08-01 13:06:46 +02:00
sim: Simulation
a = 0
for sim in simulations.simlist:
if not sim.testcase:
continue
a += 1
testinput = [sim.alpha, sim.v, sim.projectile_mass, sim.gamma,
sim.target_water_fraction, sim.projectile_water_fraction]
scaled_input = list(scaler.transform_parameters(testinput))
nn_output = neural_network_test(scaled_input)
nn_squared_errors.append(squared_error(nn_output, sim.water_retention_both))
nn_errors.append(absolute_error(nn_output, sim.water_retention_both))
rbf_output = rbf_test(scaled_input)
rbf_squared_errors.append(squared_error(rbf_output, sim.water_retention_both))
rbf_errors.append(absolute_error(rbf_output, sim.water_retention_both))
2019-08-20 12:51:31 +02:00
if sim.runid in grid_testing_cache:
grid_output = grid_testing_cache[sim.runid]
else:
grid_output = grid_test(scaled_input)
if np.isnan(grid_output):
grid_output = False
grid_testing_cache[sim.runid] = grid_output
2019-08-21 12:54:27 +02:00
with open(cachefile, "w") as f:
2019-08-20 12:51:31 +02:00
json.dump(grid_testing_cache, f)
if grid_output:
grid_squared_errors.append(squared_error(grid_output, sim.water_retention_both))
grid_errors.append(absolute_error(grid_output, sim.water_retention_both))
2019-08-01 13:06:46 +02:00
print(nn_output, rbf_output, grid_output, sim.water_retention_both)
print(a)
print()
# print(nn_squared_errors)
print(mean(nn_squared_errors))
print(mean(nn_errors))
print()
# print(rbf_squared_errors)
print(mean(rbf_squared_errors))
print(mean(rbf_errors))
print()
# print(grid_squared_errors)
print(mean(grid_squared_errors))
print(mean(grid_errors))