from typing import List, Iterator, Optional
import numpy as np
class CustomScaler:
"""
This is basically a simpler implementation of `sklearn.preprocessing.StandardScaler` that
allows transforming both parameter sets and the initial data.
def __init__(self):
self.means: Optional[np.ndarray] = None
self.stds: Optional[np.ndarray] = None
def fit(self, data: np.ndarray) -> None:
self.means = np.mean(data, 0)
self.stds = np.std(data, 0)
# print(self.means)
# print(self.stds)
def _check_fitted(self):
if (self.means is None) or (self.stds is None):
raise Exception("you need to first fit data")
def transform_data(self, data: np.ndarray) -> np.ndarray:
self._check_fitted()
return (data - self.means) / self.stds
# return data
def transform_parameters(self, parameters: List) -> Iterator[float]:
if len(parameters) != len(self.means):
raise ValueError("incorrect number of parameters")
for index, parameter in enumerate(parameters):
yield (parameter - self.means[index]) / self.stds[index]