import argparse from math import pi, sqrt from scipy.constants import G, astronomical_unit from CustomScaler import CustomScaler from interpolators.rbf import RbfInterpolator from simulation_list import SimulationList parser = argparse.ArgumentParser(description="interpolate water retention rate using RBF", epilog="returns water retention fraction and mass_retention fraction seperated by a newline") requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument("-a", "--alpha", type=float, required=True, help="the impact angle [degrees]") requiredNamed.add_argument("-v", "--velocity", type=float, required=True, help="the impact velocity [AU/58d]") requiredNamed.add_argument("-mp", "--projectile-mass", type=float, required=True, help="mass of the projectile [M_⊙]") requiredNamed.add_argument("-mt", "--target-mass", type=float, required=True, help="mass of the projectile [M_⊙]") # Massen in Sonnenmassen # gaussche Gravitationskonstante # geschwindigkeiten in au/58d # radius aus der Masse # Winkel in Grad # beide Massen statt gamma args = parser.parse_args() print(args) solar_mass = 1.98847542e+30 # kg ice_density = 0.9167 / 1000 * 100 ** 3 # TODO: check real numbers basalt_density = 3 / 1000 * 100 ** 3 water_fraction = 0.15 alpha = args.alpha target_water_fraction = water_fraction projectile_water_fraction = water_fraction projectile_mass_sm = args.projectile_mass target_mass_sm = args.target_mass projectile_mass = projectile_mass_sm / solar_mass target_mass = target_mass_sm / solar_mass def core_radius(total_mass, water_fraction, density): core_mass = total_mass * (1 - water_fraction) return (core_mass / density * 3 / 4 / pi) ** (1 / 3) def total_radius(total_mass, water_fraction, density, inner_radius): mantle_mass = total_mass * water_fraction return (mantle_mass / density * 3 / 4 / pi + inner_radius ** 3) ** (1 / 3) target_core_radius = core_radius(target_mass, target_water_fraction, basalt_density) target_radius = total_radius(target_mass, target_water_fraction, ice_density, target_core_radius) projectile_core_radius = core_radius(projectile_mass, projectile_water_fraction, basalt_density) projectile_radius = total_radius(projectile_mass, projectile_water_fraction, ice_density, projectile_core_radius) escape_velocity = sqrt(2 * G * (target_mass + projectile_mass) / (target_radius + projectile_radius)) velocity_original = args.velocity const = 365.256 / (2 * pi) # ~58.13 velocity_si = velocity_original * astronomical_unit / const / (60 * 60 * 24) velocity = velocity_si / escape_velocity gamma = projectile_mass_sm / target_mass_sm simulations = SimulationList.jsonlines_load() scaler = CustomScaler() scaler.fit(simulations.X) scaled_data = scaler.transform_data(simulations.X) water_interpolator = RbfInterpolator(scaled_data, simulations.Y_water) mass_interpolator = RbfInterpolator(scaled_data, simulations.Y_mass) testinput = [alpha, velocity, projectile_mass, gamma, target_water_fraction, projectile_water_fraction] scaled_input = list(scaler.transform_parameters(testinput)) water_retention = water_interpolator.interpolate(*scaled_input) mass_retention = mass_interpolator.interpolate(*scaled_input) print(water_retention) print(mass_retention)